The Atacama Large Millimeter Array Science drivers and operations Ewine F. van Dishoeck European Project Scientist (interi **Chair ESAC**

Outline

- ALMA science drivers
- ALMA overview
- ALMA operations in Chile
- ALMA operations in Europe
- Early science observing

What is ALMA?

- Europe-North America bilateral project
- 64 x 12m antenna's; 7238 m² total area
- Frequency range 30-900 GHz (7 0.35 mm)
- Configurations from 150m to 14km, with spatial resolution down to 0.01"
- High (5000m) dry site in northern Chile

Radiation at mm wavelengths

- Continuum: cold dust at 10-100 K; steep spectrum with v³
- Lines: pure rotational transitions of molecules

ALMA probes cold molecular clouds of gas and dust

B68 dark cloud Optical Infrared

Such obscured star-forming regions can be probed directly at mm wavelengths

Alves et al. 2001

ALMA science drivers

• Main scientific themes:

- Formation and origin of high-z galaxies
- Birth of stars and planetary systems
- ALMA can probe obscured regions ($A_V > 100$ mag), in contrast with optical telescopes
- Combination of high angular resolution (0.01"-1") with high sensitivity will allow applications in every branch of astronomy

Pioneering Millimeter Arrays

CARMA = OVRO + BIMA

National Astronomical Observatory of Japan Nobeyama Radio Observatory

Nobeyama Millimeter Array

with the new 10 m submillimeter telescope (ASTE)

Complemented by large single dish telescopes

These arrays

are small and at

(relatively) low

elevations

IRAM Plateau de Bure

Questions about the Early Universe

- When did the first stars form => reionization?
- When did elliptical galaxies form?

P. Shaver

ALMA and the deep Universe

- Evidence for large population of dusty galaxies:
 - Far-IR background
 - Submm continuum sources
 - High-z CO

Recent developments in mm/submm astronomy

CO at z = 2

(Eisenhardt et al. 1996)

FIR background

SCUBA sources

(Hughes et al. 1998)

P. Shaver

Example: Lockman850.1 Massive elliptical at z~3 in formation?

Plateau de Bure 1.3 mm

Identifications are extremely faint or impossible at optical/IR; redshift determination?

Lutz et al. 2001

CO in the quasar PSS 2322+1944

z=4.12

Determination of redshift from CO at mm wavelengths

Cox et al. 2002

Starting to study them...

CO 3-2 at z=2.80

CO rotation curve

SMM J020399-0136

Genzel et al. 2003

M>4x10¹¹ M_{sun} within 8 kpc => challenge for standard hierarchical galaxy merger scenarios

Dust and CO at z=6.4!

Sloan survey optical image

Contours: dust

Bertoldi et al. 2003

IRAM 30m MAMBO

=> Heavy elements formed shortly after Big Bang

Understanding galactic physics locally

Antennae galaxies

Image: HST Contours: CO

Wilson et al. 1999

Strongest CO emission comes from optically invisible region!

ALMA can detect throughout the Universe:

- Starburst galaxy in minutes
- Milky-Way galaxy in hours

ALMA as a redshift machine

- Distance between CO lines: 115 GHz/(1+z) ∆v=8-16 GHz => a few settings are sufficient to detect at least 1 CO line
- Driver for:
 - Large collecting area
 - Wide frequency coverage

Redshifted CO with frequency bands

High Angular Resolution for Identifications

SCUBA resolution

ALMA resolution

Hughes et al. (1998)

P. Shaver

ALMA and the Formation of Stars and Planets

ALMA & outflows from young stars: Progress requires high resolution imaging

Some exoplanetary systems have Jupiter(s) at the distance of Mercury/Venus!

How does this happen?

Star-Disk-Planet Systems

Theory

The answer lies in the past, during the time when the star and its planets are being assembled.

Simulation G. Bryden

Need ALMA observations!

Protoplanetary disks

Size disks ~10¹⁰ km = 2xSun-Pluto

Young disk in Taurus

ALMA and protoplanetary disks

M(gas + dust)=0.01 M_{sun} t=few Myr gas + dust interstellar

M(dust)<1 M_{earth} t>10 Myr dust produced in situ

- Time scale for gas and dust dissipation?
- Physical structure disks (T, n, v,)
- Evidence for planet formation?
- Chemical evolution gas + dust

Example: Vega debris disk

Dust trapped in resonances due to unseen planet with few M_{Jup} ?

Simulation

PdB 1mm data

Disks around brown dwarfs

Example of synergy between facilities

-Brown dwarf with VLT -Peak disk luminosity with Herschel (unresolved) -Mass + image disk with ALMA

ALMA and protoplanetary disks

- ALMA can provide:
 - Statistics on hundreds of pre-main sequence stars down to 0.01 M_{Earth} of cold dust at 100 pc
 - High precision images and kinematics of inner disk down to 1 AU
- Driver for:
 - Large collecting area
 - Highest angular resolution
 - High-resolution spectroscopy (<0.1 km/s)</p>

Wolf et al. 2002

ALMA and the Solar System

ALMA will also revolutionize our understanding of objects as diverse as comets...

Mars Opposition - March 1997

HDO

... and planetary atmospheres.

HST WFPC2-Color composite¹ Surface features

HST WFPC2-Blue filter (410 nm)¹ Cloud structure

OVRO - Integrated HDO Emission (1.3 mm)² Water vapor distribution

Source: G. Blake

¹ P. James (U. Toledo), T. Clancy (SSI), S. Lee (U. Colorado), and NASA

Minor planets in solar system

Size Quaoar measured at mm wavelengths

Bertoldi et al. 2002

ALMA and Astrochemistry

What are building blocks for live elsewhere in the Universe?

Hot core associated with massive YSO

Detection of DCO⁺ in a circumstellar disk

DCO⁺/HCO⁺=0.035 => gas in disks is cold with heavy depletions

Van Dishoeck et al. 2003

ALMA Level 1 science requirements

- The ability to detect CO or C⁺ in a normal galaxy like the Milky Way at z=3 in less than 24 hr
- The ability to image the gas kinematics in protostars and protoplanetary disks at a distance of 150 pc
- The ability to provide precise images at an angular resolution of 0.1"
ALMA overview

- Europe-North America agreement signed February 2003: 552 M Dollar total (Y2000)
- 64 x 12 m antenna's; 7238 m² total area
- 30 900 GHz (7 mm 0.35 mm)
 4 out of 10 receiver bands initially; 8 GHz BW
 - Band 3: 84-119 GHz
 - Band 6: 211-275 GHz
 - Band 7: 275-370 GHz
 - Band 9: 602-720 GHz
- Correlator (2016 baselines; 16 GHz per antenna)
- 183 GHz Water Vapor Radiometers for phase cal

Atmospheric transmission on good day

Atmospheric transmission at Chajnantor, pwv = 0.5 mm

Bands 3, 6, 7 and 9 installed initially

ALMA overview (cont'd)

- High spatial resolution: $(0.25''/B_{km})\lambda_{mm}$
 - 0.08" at 1mm with 3 km baselines
 - 0.01" at 0.35 mm with 14 km baselines
- This corresponds to 1.5 AU in nearest starforming regions, 85 AU at Galactic Center, 1 pc at Virgo

⇒ALMA will be 10,000 times faster for continuum, 500 times faster for line data, and will see 50 times sharper than existing facilities!

ALMA will be unique

ASAC/ESAC

- ASAC: 5 from each side
 - P. Cox, J. Richer, P. Schilke, L. Testi, E. van Dishoeck
 - C. Carilli, L. Mundy, P. Myers, J. Turner, C. Wilson
 - Project scientists are ex-officio members
 - 1 Chilean member, 3 Japanese observers
- New ESAC has members from each ESO country (J. Yun from Portugal)
- ASAC/ESAC reports and minutes on Web

Science Operations: Astronomers Perspective

- Non-experts should be able to use ALMA
- Dynamic scheduler to match observing conditions
- Reliable and consistent calibration:
 - -1% at mm, few % at submm goal
- Data public in timely fashion

ALMA Operations

- Array Operations Site
- Operations Support Facility
- Central Office
- Regional Support Centers
- Development / Upgrades

Chajnantor San Pedro Santiago NA/EU NA/EU

Subject to changes by ALMA Board!

Church San Pedro

Main square San Pedro

Chajnantor

ASAC at center of ALMA array

2002 October 22-24

Infrastructure Requirements Review

Main Functions AOS

- Antenna re-configuration (continuous)
- Instrument module exchange
- Security of site

Infrastructure Requirements Review

The ALMA `Camera' concept: Configurations evolve smoothly from compact (150m) to extended (14km)

Compact array: as densely packed as possible, with minimal shadowing and still allowing all antennas to be accessed by the transporter.

Current Transporter Concepts ALMA Transporter Requirements Review October 24, 2002 ALMA Antenna IPT 3 J. S. Kingsley & M. Kraus

Location OSF

NORTH 2002 October 22-24

Infrastructure Requirements Review

Access Road to O.S.F.

Views from O.S.F. Area at 2800

Main functions OSF: near San Pedro

- Array scheduling and operations
- Quick-look data reduction
- Maintenance and repair antennas
- Maintenance and repair instrumentation
- Administration, safety

Dynamic Scheduler

- Dynamic scheduler selects programs according to:
 - Science rating
 - Weather conditions: transparency, phase rms , ('stringency')
 - Execution status
 - Array configuration
 - Partner parity

Transparency Variations

Annual variation

τ =0.05 corresponds to ~1 mm precipitable water vapor

Site Test Interferometer

300 m baseline 36° el.

Phase Stability Variations

Annual variation

 ϕ <100 µm needed to image to 0.2" at 345 GHz without phase correction

Transparency and Phase Stability

Median

Note tail in statistics of periods with good transparency but large phase rms \neg > phase correction essential!

Main functions Central Office: Santiago

- Pipeline data reduction
- Quality assessment
- Production of archive
- Business functions
- Science offices

Science operations in practice

- Phase I + II proposals through RSCs
 - Powerful time estimator and end-to-end data simulator ¬> scheduling blocks to OSF
- Scheduler selects programs; assures homogeneous + consistent calibration; possibility of eavesdropping and `breakpoints'
- Pipeline data reduction, quality control, production of archive, VO compatible
 - Complete data management system
- Advanced data reduction at RSCs

Example: Vega debris disk

Dust trapped in resonances due to unseen planet?

Use simulator to `observe' model in same way as actual data

Regional Support Centers: *Core Functions*

- Proposal handling
- User support for proposals and data reduction beyond the standard pipeline products
- Host of copy of archive

Core functions are controlled by ALMA Observatory

Regional Support Centers: *Additional Functions*

- Advanced software and techniques (e.g. large OTF maps)
- Training, summer schools, outreach
- Research funding,

Additional functions may differ between RSCs

Models for European RSC

True Center in single location

Central Node with distributed network

Favored by Community

Virtual Center distributed throughout Europe

Central Node with network

- Strong Central Node for user support
- Development within distributed network, to ensure optimal use of expertise in European institutes

Community comments welcome!

Development / Upgrades

- New / upgrade instrumentation over lifetime of array, e.g.:
 - Additional receiver bands
 - Second generation correlator
 - Improved software
- To be done mostly at institutes in partner countries, under contract from ESO
- Development funding included in operations budget (~5 MEu/ year Europe)

Early Science observing: >Q3 2007

- Follows Commisioning and Science Verification
- Open to community through call for proposals
- Should demonstrate unique ALMA capabilities to all astronomers
- Provides feedback to ALMA operations

Operations with full array will start in 2012
Unique ALMA capabilities for Early Science

- Sensitivity: gain over existing facilities once >6 antenna's
- Long baselines ¬> high angular resolution
- High frequencies
- Southern sky

Early science sensitivities

Atacama Pathfinder EXperiment

MPIfR, Sweden, ESO

Copy of one prototype antenna installed on Chajnantor June 2003 Observations starting next year

