

## Limits on Dark Radiation, Early Dark Energy and Relativistic Degrees of Freedom

Phys. Rev. D 83 (2011) 123504, arXiv:1103.4132

### Erminia Calabrese

in collaboration with Dragan Huterer (Michigan), Eric V. Linder (Berkeley), Luca Pagano (JPL) and Alessandro Melchiorri (Rome)

> Azores School on Observational Cosmology 01/09/2011

#### **RELATIVISTIC EXCESS**

Total radiation density: 
$$\rho_r = \rho_\gamma + \rho_\nu$$
  
 $\rho_\nu = \rho_\gamma \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{eff}$ 

 $N_{eff}$  is the effective number of neutrinos.

In the standard model  $N_{eff}$  describes **3 massless neutrinos**. Considering then the entropy transfer with the thermal bath it reduces to :

$$N_{\rm eff} = 3.046$$

 $\triangleright$  wmap7+BAO+Ho $N_{eff} = 4.34^{+0.86}_{-0.88}$  (68% CL) $\triangleright$  wmap7+DR7 $N_{eff} = 4.78^{+1.86}_{-1.79}$  at 95% $\triangleright$  wmap7+ACT $N_{eff} = 5.3 \pm 1.3$  (68% CL) $\triangleright$  wmap7+SPT $N_{eff} = 3.85 \pm 0.62$ (68% CL)

#### **EVIDENCES FOR A STERILE NEUTRINO**

 $\rightarrow N_{\rm eff} = 3.046 + N_{\rm s}$ 



Left: The  $3 + N_s$  scheme, in which ordinary neutrinos are massless. Right: The  $N_s$  +3 scheme, where the sterile state is massless and 3.046 species of ordinary neutrinos have a common mass.

Hamann et al., PRL ,105, 181301 (2010) arXiv:1006.5276v2

5

The empty (filled) contours denote the 68%, 95% and 99.73% c.l. regions for Planck plus BOSS (Euclid) data.

The neutrino parameters in the fiducial model are  $N_{vs} = 1$ ,  $m_{vs} = 0.3 \text{ eV}$  and  $m_v = 0.1 \text{ eV}$ .

<u>Giusarma et al. Phys.Rev.D83:115023,2011</u> <u>arXiv:1102.4774</u>

#### EARLY DARK ENERGY

The dark energy contribution is assumed to be represented by a scalar field whose evolution tracks that of the dominant component of the cosmic fluid at a given time!



<u>See Zlatev et al, arXiv:9807002v2 [astro-ph.CO]</u> Ferreira and Joyce, PRD , 58, 023503 (1998)

#### EARLY DARK ENERGY

The dark energy contribution is assumed to be represented by a scalar field whose evolution tracks that of the dominant component of the cosmic fluid at a given time!



<u>See Zlatev et al, arXiv:9807002v2 [astro-ph.CO]</u> Ferreira and Joyce, PRD , 58, 023503 (1998)

$$\Omega_{\rm de}(a) = \frac{\Omega_{\rm de}^0 - \Omega_{\rm e} \left(1 - a^{-3w_0}\right)}{\Omega_{\rm de}^0 + \Omega_m^0 a^{3w_0}} + \Omega_{\rm e} \left(1 - a^{-3w_0}\right)$$
$$w(a) = -\frac{1}{3[1 - \Omega_{\rm de}(a)]} \frac{d\ln\Omega_{\rm de}(a)}{d\ln a} + \frac{a_{eq}}{3(a + a_{eq})}$$

M. Doran and G. Robbers, JCAP 0606 (2006) [arXiv:astro-ph/0601544].



#### EARLY DARK ENERGY

The dark energy contribution is assumed to be represented by a scalar field whose evolution tracks that of the dominant component of the cosmic fluid at a given time!



<u>See Zlatev et al, arXiv:9807002v2 [astro-ph.CO]</u> Ferreira and Joyce, PRD , 58, 023503 (1998)

$$\Omega_{\rm de}(a) = \frac{\Omega_{\rm de}^{0} - \Omega_{\rm e} \left(1 - a^{-3w_{0}}\right)}{\Omega_{\rm de}^{0} + \Omega_{m}^{0} a^{3w_{0}}} + \Omega_{\rm e} \left(1 - a^{-3w_{0}}\right)$$
$$w(a) = -\frac{1}{3[1 - \Omega_{\rm de}(a)]} \frac{d \ln \Omega_{\rm de}(a)}{d \ln a} + \frac{a_{eq}}{3(a + a_{eq})}$$

M. Doran and G. Robbers, JCAP 0606 (2006) [arXiv:astro-ph/0601544].





<u>See Sherrer R.J. PRD, 73, (2006), arXiv:0509890 [astro-ph]</u> Linder & Sherrer, PRD, 80 (2009), arXiv:0811.2797 [astro-ph]



<u>See Sherrer R.J. PRD, 73, (2006), arXiv:0509890 [astro-ph]</u> Linder & Sherrer, PRD, 80 (2009), arXiv:0811.2797 [astro-ph]



Linder & Sherrer, PRD, 80 (2009), arXiv:0811.2797 [astro-ph]

$$\rho_{\text{baro}}(a) = \rho_{\infty} + C\rho_{r,0}a^{-4} , \quad P_{\infty} = (3H_0^2/8\pi G)(1 - \Omega_m - C\Omega_{r,0}) \\ C = \Omega_e^B/(1 - \Omega_e^B)$$



#### **RELATIVISTIC DEGREES OF FREEDOM**

$$N_{\rm eff} = N_{\rm eff}^{\nu} + \Delta N_{\rm eff}^{EDE} + \Delta N_{\rm eff}^{B}$$
$$\Delta N_{\rm eff}^{EDE}(a) = \left[\frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right]^{-1} \frac{\rho_{de}(a)}{\rho_{\gamma}(a)} , \quad \Delta N_{\rm eff}^{EDE}(a \ll a_{eq}) = 7.44 \frac{\Omega_{\rm e}}{1 - \Omega_{\rm e}}$$



EC et al., Phys. Rev. D 83 (2011) 123504, arXiv:1103.4132

#### **CMB INFORMATIONS**



EC et al., Phys. Rev. D 83 (2011) 123504, arXiv:1103.4132

#### CONSTRAINTS ON EDE AND $N_{eff}^{v}$

|                                                                                                                                                                                            | WMAP7 + ACBAR + QUAD + ACT + SDSS-DR7 + HST                                                                                                                                     |                                                                                                                                                                                 |                                                                                                                                                                                       |                                                                                                                                                                                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Model:                                                                                                                                                                                     | $N_{\text{eff}}^{\nu} =$                                                                                                                                                        | - 3.046                                                                                                                                                                         | $N_{ m eff}^{ u}$ varying                                                                                                                                                             |                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                            | $c_{\rm s}^2 = c_{\rm vis}^2 = 1/3$                                                                                                                                             | $c_{\rm s}^2 = 1, c_{\rm vis}^2 = 0$                                                                                                                                            | $c_{\rm s}^2 = c_{\rm vis}^2 = 1/3$                                                                                                                                                   | $c_{\rm s}^2 = 1, c_{\rm vis}^2 = 0$                                                                                                                                                  |  |  |
| Parameter                                                                                                                                                                                  |                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                       |                                                                                                                                                                                       |  |  |
| $ \begin{array}{c} \Omega_b h^2 \\ \Omega_c h^2 \\ H_0 \\ n_s \\ t_0 / \text{ Gyr} \\ N_{\text{eff}}^{\nu} \\ \Omega_e \\ \Delta N_{\text{eff}}^{EDE}(a_{\text{BBN}}) \\ Y_p \end{array} $ | $\begin{array}{c} 0.02218 \pm 0.00044 \\ 0.1178 \pm 0.0039 \\ 68.2 \pm 1.7 \\ 0.971 \pm 0.013 \\ 13.71 \pm 0.30 \\ 3.046 \\ < 0.043 \\ < 0.34 \\ 0.2504 \pm 0.0013 \end{array}$ | $\begin{array}{c} 0.02232 \pm 0.00044 \\ 0.1163 \pm 0.0038 \\ 67.8 \pm 1.6 \\ 0.964 \pm 0.011 \\ 13.83 \pm 0.29 \\ 3.046 \\ < 0.024 \\ < 0.18 \\ 0.2495 \pm 0.0008 \end{array}$ | $\begin{array}{c} 0.02238 \pm 0.00047 \\ 0.138 \pm 0.012 \\ 72.5 \pm 2.8 \\ 0.988 \pm 0.015 \\ 12.91 \pm 0.48 \\ 4.37 \pm 0.76 \\ < 0.039 \\ < 0.32 \\ 0.2661 \pm 0.0078 \end{array}$ | $\begin{array}{c} 0.02259 \pm 0.00048 \\ 0.139 \pm 0.011 \\ 72.4 \pm 2.7 \\ 0.986 \pm 0.015 \\ 12.94 \pm 0.48 \\ 4.49 \pm 0.72 \\ < 0.020 \\ < 0.18 \\ 0.2667 \pm 0.0080 \end{array}$ |  |  |

TABLE I: Best-fit values and 68% confidence errors on cosmological parameters using the current cosmological data. For  $\Omega_{\rm e}$  and  $\Delta N_{\rm eff}^{EDE}(a_{\rm BBN})$ , EDE density and the contribution to the RDOF from EDE at the BBN epoch respectively, the upper bounds at 95% c.l. are reported. See text for other details.

#### **CONSTRAINTS ON EDE AND N<sup>v</sup>**<sub>eff</sub>

|                                         | WMAP7 + ACBAR + QUAD                |                                      |  |  |  |
|-----------------------------------------|-------------------------------------|--------------------------------------|--|--|--|
| Model:                                  | $N_{\rm eff}^{\nu} = 3.046$         |                                      |  |  |  |
|                                         | $c_{\rm s}^2 = c_{\rm vis}^2 = 1/3$ | $c_{\rm s}^2 = 1, c_{\rm vis}^2 = 0$ |  |  |  |
| Parameter                               |                                     |                                      |  |  |  |
| $\Omega_b h^2$                          | $0.02218 \pm 0.00044$               | $0.02232 \pm 0.00044$                |  |  |  |
| $\Omega_c h^2$                          | $0.1178 \pm 0.0039$                 | $0.1163 \pm 0.0038$                  |  |  |  |
| $H_0$                                   | $68.2 \pm 1.7$<br>$0.971 \pm 0.013$ | $67.8 \pm 1.6$<br>$0.964 \pm 0.011$  |  |  |  |
| $t_0/$ Gyr                              | $13.71 \pm 0.30$                    | $13.83 \pm 0.29$                     |  |  |  |
| $N_{\text{eff}}^{\nu}$                  | 3.046 < 0.043                       | 3.046 < 0.024                        |  |  |  |
| $\Delta N_{\rm eff}^{EDE}(a_{\rm BBN})$ | < 0.34                              | < 0.18                               |  |  |  |
| $Y_p$                                   | $0.2504 \pm 0.0013$                 | $0.2495 \pm 0.0008$                  |  |  |  |

TABLE I: Best-fit values and 68% confidence errors on cosmological par and  $\Delta N_{\text{eff}}^{EDE}(a_{\text{BBN}})$ , EDE density and the contribution to the RDOF fi bounds at 95% c.l. are reported. See text for other details. Since the early dark energy enhances the expansion rate during the BBN, it allows for a higher primordial Helium mass fraction according to  $\Delta Yp \approx 0.013(N_{eff} - 3)$ 



Current measurements seems to prefer a larger value for Yp, Yp= $0.2561\pm0.0108$  or Yp= $0.2565\pm0.0010(\text{stat.})\pm0.0050(\text{syst.})$ . These results are off by ~1.5 sigma from the expectations of standard BBN but introducing EDE acts to alleviate this tension.

EC et al., Phys. Rev. D 83 (2011) 123504, arXiv:1103.4132

#### CONSTRAINTS ON EDE AND $N_{eff}^{\nu}$



and  $\Delta N_{\text{eff}}^{EDE}(a_{\text{BBN}})$ , EDE density and the contribution to the RDOF from EDE at the BBN epoch respectively, the upper bounds at 95% c.l. are reported. See text for other details.

EC et al., Phys. Rev. D 83 (2011) 123504, arXiv:1103.4132

# $\begin{array}{c} \textbf{CONSTRAINTS ON} \\ \textbf{BAROTROPIC DE AND N^{v}}_{eff} \end{array}$

The barotropic model strongly alters the constraints on  $N_{eff}^{v}$  and <u>a non-negligible</u> presence of the dark radiation part of the barotropic dark energy at recombination could not only bring the constraints on  $N_{eff}^{v}$  back in agreement with the standard value of  $N_{eff}^{v}$  = 3.046 but even erase the current claim for a neutrino background from CMB data!



#### **PLANCK FORECASTS**



$$\begin{split} F_{ij} &\equiv \langle -\frac{\partial^2 ln\mathcal{L}}{\partial p_i \partial p_j} \rangle_{p_0} \\ F_{ij}^{\text{CMB}} &= \sum_{l=2}^{l_{\text{max}}} \sum_{\alpha,\beta} \frac{\partial C_l^{\alpha}}{\partial p_i} (\text{Cov}_l)_{\alpha\beta}^{-1} \frac{\partial C_l^{\beta}}{\partial p_i}, \end{split}$$



| Experiment          | Channel[GHz] | FWHM  | $\sigma_T[\mu K]$ | $\sigma_P[\mu K]$ |
|---------------------|--------------|-------|-------------------|-------------------|
| Planck              | 143          | 7.1'  | 6.0               | 11.4              |
| $f_{ m sky} = 0.85$ | 100          | 10.0' | 6.8               | 10.9              |
|                     | 70           | 14.0' | 12.8              | 18.3              |

[Planck Collaboration], arXiv:astro-ph/0604069.

#### **PLANCK FORECASTS**

|                                                                                                             |                                                                                     | Planck 1-σ                                                                  | uncertaint                                      | у                                  |                          |             |            |            |      |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|--------------------------|-------------|------------|------------|------|
| Model:                                                                                                      |                                                                                     | $c_{\rm s}^2 = c_{\rm vis}^2 = 1/3$                                         | $c_{\rm s}^2=1, c_{\rm vis}^2$                  | = 0                                | Sti                      | rinaent lir | nits on re | lativistic |      |
| Parameter                                                                                                   | Fiducial                                                                            |                                                                             |                                                 |                                    | de                       | grees of fi | reedom ai  | nd very    |      |
| $egin{array}{c} \Omega_b h^2 \ \Omega_c h^2 \ 	au \ H_0 \end{array}$                                        | 0.02258<br>0.1109<br>0.0880<br>71.0<br>0.0620                                       | $\begin{array}{c} 0.00016 \\ 0.0018 \\ 0.0020 \\ 8.5 \\ 0.0046 \end{array}$ | 0.00014<br>0.0017<br>0.0022<br>8.8<br>0.0044    |                                    |                          | tie impact  | "Jrom ED.  | Е.         |      |
| $N_{ m eff}^{ u}$ $W_0$ $\Omega_e$ $c_{ m s}^2$ $c_{ m vis}^2$ $c_{ m vis}^2$ $c_{ m vis}^2$ $c_{ m vis}^2$ | $\begin{array}{c} 3.046 \\ -0.95 \\ 0.030 \\ 0.33 \\ 0.33 \\ 1.00 \\ 0 \end{array}$ | 0.11<br>0.24<br>0.005<br>0.047<br>0.13<br>-                                 | 0.10<br>0.24<br>0.004<br>-<br>-<br>0.34<br>0.11 | $\mathrm{N}^{ u}{}_{\mathrm{eff}}$ | 3.50<br>3.25 -<br>3.00 - |             |            |            |      |
|                                                                                                             |                                                                                     |                                                                             | .1102 1122                                      |                                    | 2.75<br>2.50<br>0.0      | 1 0.02      | 0.03<br>Ω  | 0.04       | 0.05 |

<u>EC et al., Phys. Rev. D 83 (2011) 123504, arXiv:1103.4132</u>

#### **PLANCK FORECASTS**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           | Planck $1 - \sigma$ uncer                                 | tainty                 | y                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------|
| Model:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           | $c_{\rm s}^2 = c_{\rm vis}^2 = 1/3$                       |                        | A degeneracy is still present and                                                                  |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fiducial                                                                                  |                                                           |                        | we have weaker bound than in the EDE scenario.                                                     |
| $\Omega_b h^2 \Omega_c h^2  onumber \ T  onumber \ T $ | 0.02258<br>0.1109<br>0.0880<br>71.00                                                      | 0.00013<br>0.0019<br>0.0022                               |                        |                                                                                                    |
| $egin{array}{c} n_{ m s} \ n_{ m s} \ N_{ m eff}^{ u} \ w_{ m 0} \ \Omega_{e}^{B} \ c_{ m s}^{2} \ c_{ m vis}^{2} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 71.00\\ 0.9630\\ 3.046\\ -0.95\\ 0.030\\ 0.33\\ 0.33\\ 0.33\end{array}$ | 0.88<br>0.0041<br>0.17<br>0.041<br>0.015<br>0.045<br>0.17 | ${ m N}^{ u}_{ m eff}$ | 3.75<br>3.38<br>3.00 + +                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                                                           | 2                      | 2.62                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                                                           | ~                      | $\begin{array}{c} 2.23 \\ 0.000 \\ 0.025 \\ 0.050 \\ 0.075 \\ 0.100 \\ \Omega_{e}^{B} \end{array}$ |

EC et al., Phys. Rev. D 83 (2011) 123504, arXiv:1103.4132

#### CONCLUSIONS

- ✓ We have studied the nature of the relativistic excess highlighted by current data focusing on an interplay between neutrinos and dark energy.
- ✓ We have seen that in a EDE scenario we still have a preference for a sterile neutrino at about two standard deviations.
- ✓ In the Barotropic DE scenario, N<sup>v</sup><sub>eff</sub> can be in perfect agreement with the standard value.
- ✓ Planck could shed light...