Azores School on Observational Cosmology 2011

Combining small-scale clustering with WMAP data to constrain models of dark energy dynamics

Michelle Knights

Masters student University of Cape Town and African Institute for Mathematical Sciences

Supervisors: Bruce Bassett and Carolina Ödman Collaborator: Patrice Okouma

The Dark Energy Debate

Many explanations for dark energy have been suggested, including:

- Scalar fields
- × Viscous fluid models
- ★ Modified gravity
- ★ Void models

Some models predict different behaviour on large and small scales, when compared with ACDM.

A General Approach

The Chevallier-Polarski-Linder (CPL) parameterisation

$$w(z) = w_0 + w_a \frac{z}{1+z}$$

Chevallier & Polarski (2001), Linder (2003)

The kink parameterisation

$$w(a) = w_0 + (w_m - w_0) \frac{1 + e^{\frac{a_c}{\Delta}}}{1 + e^{-\frac{a - a_c}{\Delta}}} \times \frac{1 - e^{-\frac{a - 1}{\Delta}}}{1 - e^{\frac{1}{\Delta}}}$$

Bassett et al. (2002), Corasaniti & Copeland (2003)

Dark Energy in Four Parameters

ISW and Dark Energy

Dark Energy Dominated Era

The Effect of ISW on the Power Spectrum

The σ_8 Parameter

Visualising $\sigma_{8}^{}$ - Bruce Bassett (2011)

Variance of *linear* power spectrum on scales of 8 *h*-1 Mpc

125 Mpc/h

A Recent Measurement of σ_8

The South Pole Telescope recently measured σ_8 using the Sunyaev-Zel'dovich effect and found that $\sigma_8 = 0.773 \pm 0.025$.

The Relationship between DE and σ_{8}

The Relationship between DE and σ_{8}

The Relationship between DE and σ_8

The Relationship between DE and σ_8

The Relationship between DE and σ_8

Importance Sampling

Some Results – CPL Parameterisation

The determinant of the covariance matrix reduces by a factor of 7.8.

Some Results – Kink Parameterisation

Importance sampled confidence intervals

Some Results – Kink Parameterisation

The determinant of the covariance matrix reduces by a factor of 1.7

Summary

- * Models of dynamical dark energy predict a lower value of σ_8 , when compared with Λ CDM, due to an increased ISW effect and the normalisation of the power spectrum.
- * The recent measurement of σ_8 from SPT has produced tighter contours on dynamical dark energy parameters, when included with WMAP7 and SNe data.
- * This work has shown that a future, model-independent measurement of σ_8 would constrain or even rule out models of dynamical dark energy.

Importance Sampling vs. Full MCMC

Importance Sampling vs. Full MCMC

Importance sampled confidence intervals

Importance Sampling vs. Full MCMC

