Bayesian hunt for systematics & new signals

Caroline Heneka

together with: Valerio Marra, Alexandre Posada, Luca Amendola Azores School, 2 June 2014

Let's find the biased ones!

2nd research focus: galaxy clusters and HMF

Robustness: statistical compatibility of subsets

 \mathcal{L} – contours shift and change size

d = d1 \cup d2

Bayesian comparison: one ⇔ two sets of parameters

$$\mathcal{B}_{tot,ind} = \frac{\mathcal{E}(d; M_C)}{\mathcal{E}(d_1; M_C) \mathcal{E}(d_2; M_S)} \implies \qquad R \equiv \log \mathcal{B}_{tot,ind}$$

Amendola, Quartin, Marra (arXiv:1209.1897)

Bayesian hunt for systematics and new signals

Significance of deviations and robustness minimization

Bayesian hunt for systematics and new signals

Robustness analysis of specific subsets:

Heneka, Marra, Amendola (arXiv:1310.8435)

Robustness analysis of distance modulus errors:

Distribution of least robust SNe

Random search (left) and GA-minimization (right)

R≈ -31

R≈ -283

Robust, but room for improvement!

advantages

- no specific model/effect has to be assumed
- Bayesian approach using full likelihood information

application

- improve understanding of systematics and correlations
- find most probable incompatible subset of ANY data

in progress

- test further dependencies of SN properties
- apply to other data than SNe

