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» Shortcomings of the Hot Big Bang
* The Inflationary Paradigm

 Homogeneous Scalar Field Dynamics
» Slow roll approximation
« Quantum Fluctuations in de Sitter




Shortcomings of the Hot Big Bang

* The space-time structure of the observable Universe

- Why is the Universe so close to spatial flatness?
- Why is matter so homogeneously distributed on large scales?

* The origin of structures in the Universe
- How did primordial spectrum of density perturbations originate?

* The origin of matter and radiation

- Where does all the energy in the Universe come from?
- How did the matter-antimatter asymmetry arise?

* The initial singularity

- Did the Universe have a beginning?
- What is the global structure of the Universe beyond our
observable patch?



Einstein-Friedmann equations

Energy density conservation:




Time evolution of density params

Homogeneous system of egs.

critical points
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Our Hubble Homogeneity
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A very elegant solution:

INFLATION
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The universe itself could be a product
of quantum uncertainty.

‘empty space” is a sea of virtual particles winking
in and out of existence:
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quantum fluetuation .
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A small bubble of
quantum vacuum
expands very rapidly
‘until it encompasses
all our Universe




Effective description (scalar field)
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SCALAR FIELD DYNAMICS
S = [ dtav=g[55R - 5007 - V(o]

Hamiltonian and momentum constraint equations

K

m o= F(H%Mvw)] |

3 |2
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K
= " T1%0.
H\z 9 gblz 9
Evolution equations
H= ——(H¢)2
3‘/
[1° +3HTI? + — = 0.
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HAMILTON-JACOBI EQUATION
Constraint <(9_H) . (Q_TW) _
equations o), ~\ot ),

Then H = H(¢(t,x")),




SLOW-ROLL PARAMETERS

H 2 (H’(qb))z _ OmH

T H? k2 \ H(¢) Olna ’
s ¢ 2 (H'(¢)\  OhnH
=5 (g ) = T

The scalar field ¢ acts as a new “time”

tend Qbend H
N, = In Zend _ Hdt = —— /
a(t) t
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The number of “e”-folds N, to the end inflation



SLOW-ROLL ATTRACTOR
Hy(o) exact particular solution

H(¢) = Ho(¢) +0H(¢)  linear perturbation
Then H|(¢)dH'(¢) = (3x*/2) HyoH with solution:

32 [0 Hy(p)dd

5H(6) = 81 (6) exp - & ) = 6H(0) expl-3a1)
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SLOW-ROLL APPROXIMATION

2

H2(1—§) ~ 02 = Dy,

3 . .
| | just dynamics
3H (1-%) ~ 3H¢ = —V'(¢)
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INFLATIONARY SOLUTIONS OF HBBP

1

p=50"+V(9),
p =50V
2
Vig)>¢? = p~—p = poconst. = H(p) ~ const.

a(t) ~ exp(Ht) = 250 accelerated expansion

curvature matter



LINEAR METRIC PERTURBATIONS
ds® = a(n)® [—(1+2®)dn* + (1 — 2®)dx* + h;; dz'd2’ |
linear pert. egs.

D" 4+ 3HD + (H +2H*)D =

2

K / / | /
1066 — a®V'(¢)09)],
2

—V20 + BHE + (H + 2H)D = ——[¢/0¢ + a®V'($)00)].

e

/{2

P +HE = —¢'06,
00" + 2Hod — V26 + a*V"(9)op = 4V — 2a*V'(¢)D .

Mukhanov variables




QUANTUM FLUCTUATIONS IN dS

0S5 = %/d?’:r dn [(z )2 — (Vu)? 7—u2]

7

~

A d3k ~ ikx * ~T  —ikx
w(n, x) = (2372 [uk(n) e e + ug(n) ay € ] )

scalar field’s Fock space
mkd]:’ﬂk—w»
) — 0.

equal-time commutation relations

e

[a(n, x), 11} (n, x")] = ihd*(x — X')



QUANTUM FLUCTUATIONS IN dS

normalization condition on the modes u;
/ .
U Uy — Uy Uy, = 1

the Wronskian of the mode equation
/!

2
Uy + (k.2 — —)uk = ()

>

~

Schrodinger like equation
,, | / /32 ;
—uy + U(n) up = k° uy,
time-dependent potential

Un) = 2"z



SOLUTIONS OF MODE EQUATIONS

slow-roll parameters approx. constant
/ 2,2
6—1—%—)5, 6—7?-[(6—60) O(e?),
- 0" 2’ 6 =H (65 — 5) = O(é?)
)=1———=14€— : - -
Ho T
| o (;5/,,
§=— (2—e—go+o —%20,)

for constant slow-roll parameters, we can write

| —1+/6(1(l —1 1
= ‘H aH ~ H1—¢€
M
2

. i - 1 1
?=H2 [(1+6—0)( —0)+’H_1(€'—0')] = ﬁ(’}—g)-
l+e—0 1

Where V= . +§




EXACT SOLUTIONS OF MODE EQS.

two asymptotic regimes,

1 .
Up = e " k>aH  Minkowsky
V 2k
up = C1(k) 2 k< aH  superhorizon

exact solution that connects the two regimes
N4

uk(n) = o ¢l +2)3 (—n)Y2 HY (—kn)

where H (1)(7) is the Hankel function of the first kind

H:E,/)z( r) = —e\/2/mx(l+1i/x),

: l+e—0 1
and v is given by  p = re—o, 2

1 —€ 2




EXACT SOLUTIONS OF MODE EQS.

limit £n — 0, the solution becomes

y—3 |
= 22T e = SO (LY
Vo T () Vor \ai)
C(v) = V=3 ?EI;; (1— 6)1/_% ~1 for 01
2
compute ® and ¢ from the super-Hubble-scale mode
o = (] (1 — ﬂ (12(177) + ﬂ
a? a?

0¢ | ,- .
—CI) — 221 a’dn — 222 | ('} growing mode
O a a

C5 decaying mode



SCALAR CURVATURE PERTURBATIONS

gauge invariant quantity constant for superhorizon modes
of adiabatic perturbations,

1, o
oy (&' + HDP) = ot

( is the gauge invariant curvature perturbation R.

(=

on constant energy density hypersurtaces,

1

=R, - 2P
q BT \%
1
C oy V<o constan

for (adiabatic) superhorizon modes, k < aH
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N2

U(n) ~2H* ~ —
/

A inside H ! inside

k? I"HC [k, = 2"HC

outside

inflation matter



SCALAR CURVATURE PERTURBATIONS

Therefore, we can evaluate the Newtonian potential ®; when the
perturbation reenters the horizon during radiation /matter eras in terms
of the curvature perturbation R; when it left the Hubble scale during
inflation,

2 L
3 3w 2R,  radiation era,
1—— /a dn Rk T Ry { ;

+ 3w 2R, matter era.

These expressions will be of special importance later.



within the horizon
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Enters horizon

Metric \

Perturbation

Horizon

Exits horizon

Inflation Radiation Matter




Scale Invariant Spectrum



Gaussian Random Field
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After Inflg




Ripples in Space

Stretched to cosmological distances



GRAVITATIONAL WAVE PERTURBATIONS

- 1 a* 0
0S5 = 5/ d°x dnf[(h )2 — (Vhy;) ]

tensor field £;; considered as a quantum field,

) (l3k A zkx
hii(n,X) = o) [hk(n) eii(k, A) ax + h.c ] :

A=12

e;i(k, \) are the two polarization tensors,

satisfying symmetric, transverse and traceless conditions
eij = ¢€ji, klejj=0, e; =0,

eif(—k.A) = ek, A). Y ek A)eV(k N) =4,
A



TENSOR MODE EQUATION

gauge invariant tensor amplitude

g}
()

uln) =

decoupled in linear perturbation theory,

(1-”
"L’Z —+ (Az — —)"Uk - O

a

For constant slow-roll parameters, the potential becomes
/!

a ¢ 1 1
i) )
a " 2 n? Ty




EXACT SOLUTIONS

in the two asymptotic regimes,

1 |
V= e k>aH  Minkowsky
' V 2k
v = C3(k) a k< aH  superhorizon

exact solutions

() = Yo 0 DE ()2 HO(— )

2
C'(u o\ 3K
In the limit kn — 0,  |vk| = \(éfk) (E)g

Since hjr becomes constant on superhorizon scales,

evaluate the tensor metric perturbation when it reentered during the
radiation or matter era directly in terms of its value during inflation.



Predictions of Inflation

BIG BANG

380.000 years
after the Big Bang

gravitational waves

13.800 Million years
after the Big Bang




Basic Inflationary Predictions

Geometry and matter:
* Homogeneity (acausal origin)
* Flat spatial sections (exp. growth)

* No appreciable topology (exp.growth)
 Origin matter & radiation (reheating)

Metric Perturbations:

» Gaussian spectrum (ground state)

» Aprox. scale invariant (slow roll cond.)

» Adiabatic density fluctuations (single fluid)
» Gravitational waves (tensor metric pert.)

* No vector perturbations (no defects)




Cosmological Observations

Cosmic Microwave Background:
*Temperature Anisotropies (WMAP9+Planck)

*Polarization Anisotropies (BICEP2+Planck)

Large Scale Structure:

*Matter Power Spectrum (2dFGRS+SDSS)
*Baryon Acoustic Oscillations (BOSS+DES)

Weak Lensing (KIDS, DES, LSST, Euclid)











































