

Cosmological implications from the eROSITA all-sky survey

Katharina Borm

University of Bonn Supervisor: Prof. Reiprich

Cosmology: From galaxy clusters to dark energy

- dark energy shapes the LSS
- evolution is imprinted in the distribution of galaxy clusters

Credit: VIRGO Collaboration 1996

- LSS expressed by the halo mass function
 How to obtain cluster masses?
 - X-ray observations
 - hydrostatic masses
 - observe L or T and apply scaling relations

The eROSITA instrument

- German X-ray instrument on Russian satellite SRG
- expected launch: 2015/16 to L2
- energy range: (0.1 10) keV
- 4 years of all-sky survey
 3 years of pointed observations

Science goal:

- detect ~100,000 galaxy clusters with z<1.5
- test nature of dark energy

Cosmological forecasts: (Pillepich et al., 2012)

 $\Delta w_0 = 0.026$ for $w_a = 0$

 $\Delta w_a = 0.206$

Credit: Merloni et al., 2012

Galaxy cluster properties

",Cosmological" Observables:

- photon counts η, z, L
- T for some clusters

Simulation Results:

- clusters with F < 9 x 10⁻¹² erg/s, but η > 100
- precise T for clusters at z < 0.08
- precise T for 1,700 new clusters
 - → ~1.5% of all observed eROSITA clusters

The halo mass function

Translate HMF into an observable function:
$$\frac{\mathrm{d}n}{\mathrm{d}\ln(M)}(M,z) \rightarrow \frac{\mathrm{d}n}{\mathrm{d}\eta}(\eta,z)$$

in theory: (M,z) scaling relations $(T,L) \rightarrow$ cluster spectrum $\rightarrow \eta$

Apply halo mass function for cosmological simulations (CosmoMC):

- reproduce former results
- What precision is required for the cluster redshifts?
- implement further mass proxies:
 - eROSITA temperatures
 - → SPT weak lensing masses