#### CONSTRAINT ON A DRIFTING PROTON-TO-ELECTRON MASS RATIO THROUGH ANALYSIS OF MOLECULAR ABSORPTION LINES

Mario Daprà

LaserLaB, Department of Physics and Astronomy, VU University Amsterdam



Azores 2014 - 03/06/2014

#### VARYING CONSTANTS





The shifting power is expressed via sensitivity coefficients  $K_{\mu}$ .

At least two lines with different sensitivities are necessary to constrain  $\Delta \mu / \mu$ .

Suitable molecules are  $H_2$ ,  $CH_3OH$ , CO,  $NH_3$ .

## <u>MOLECULES</u>

Two basic requirements:

- 1. sensitive transitions  $\Leftrightarrow K_{\mu} \neq 0$
- 2. Detectable at intermediate high redshift



### MOLECULAR HYDROGEN

118 H<sub>2</sub> lines are detected in three absorbers towards QSO **J1237+0647** at redshift:

$$z_{abs1} = 2.68801$$
  
 $z_{abs2} = 2.68868$   
 $z_{abs3} = 2.68955$ 



6 VC

Generic -  $\Delta\mu/\mu = (-0.35 \pm 1.33) \cdot 10^{-5}$ Warm states -  $\Delta\mu/\mu = (-0.03 \pm 1.32) \cdot 10^{-5}$ Cold states -  $\Delta\mu/\mu = (-0.99 \pm 3.10) \cdot 10^{-5}$ 1st absorber -  $\Delta\mu/\mu = (0.73 \pm 2.21) \cdot 10^{-5}$ 2nd absorber -  $\Delta\mu/\mu = (-2.73 \pm 1.97) \cdot 10^{-5}$ 3rd absorber -  $\Delta\mu/\mu = (3.50 \pm 3.18) \cdot 10^{-5}$ 

#### <u>METHANOL</u>

Methanol is only detected in the lensing galaxy towards QSO PKS1830-211 at redshift  $z_{abs} = 0.89$ 







| Tra      | ansition  | $\nu$ [GHz] | $K_{\mu}$ | Obs. date |
|----------|-----------|-------------|-----------|-----------|
| 3_1      | $-2_0 E$  | 6.46        | -32.8     | Feb. 2012 |
|          |           |             |           | Nov. 2012 |
|          |           |             |           | May 2013  |
| 00-      | $1_0 A^+$ | 25.65       | -1.0      | Dec. 2011 |
|          |           |             |           | Apr. 2012 |
|          |           |             |           | Mar. 2013 |
|          |           |             |           | Apr. 2013 |
| 00-      | $1_0 E$   | 25.65       | -1.0      | Dec. 2011 |
|          |           |             |           | Apr. 2012 |
|          |           |             |           | Mar. 2013 |
|          |           |             |           | Apr. 2013 |
| $2_{-1}$ | $-1_0 E$  | 32.10       | -7.4      | Mar. 2012 |

| Transition            | $\nu$ [GHz] | $K_{\mu}$ | Obs. date |
|-----------------------|-------------|-----------|-----------|
| $3_0-2_1 A^+$         | 83.04       | -2.7      | Aug. 2012 |
| $1_{-1}$ - $1_0 E$    | 83.40       | -3.5      | Aug. 2012 |
| $2_{-1}$ - $2_0 E$    | 83.40       | -3.5      | Aug. 2012 |
| $3_{-1}$ - $3_0 E$    | 83.40       | -3.5      | Aug. 2012 |
| $1_0$ - $1_1 A^{+/-}$ | 160.87      | -1.9      | Aug. 2012 |
|                       |             |           |           |





 $\frac{\Delta\mu}{\mu} = (-1.0 \pm 0.8_{\rm stat} \pm 1.0_{\rm syst}) \cdot 10^{-7}$ 

# <u>HIGHLIGHTS</u>

• J1237+0647 Constraint on  $\Delta\mu/\mu$  from 118 H<sub>2</sub> lines molecular hydrogen of:  $\Delta\mu/\mu$ = (-0.35 ± 1.33<sub>stat</sub>)·10<sup>-5</sup>

• <u>J1237+0647</u> Use CO lines to derive another constraint on  $\Delta\mu/\mu$ 

• <u>PKS1830-211</u> Constraint on  $\Delta\mu/\mu$  from 17 methanol lines of:  $\Delta\mu/\mu$ =(-1.0±0.8<sub>stat</sub>±1.0<sub>syst</sub>)·10<sup>-7</sup>



#### The varying constants team:

- Julija Bagdonaite
- Paul Jansen
- Lex Kaper
- Michael Murphy

- Rick Bethlem
- Christian Henkel
- Karl Menten
- Wim Ubachs