
Redshift-space distortions: two-point 
correlation function in wide-angle regime

Paulo Reimberg, Universidade de São Paulo/CEA-Saclay
in collaboration with F. Bernardeau, C. Pitrou, and R. Abramo

Angra do Heroísmo, 05/06/2014

II Azores School on Observational Cosmology



1

I. BASICS

Shall zρ(s) be the field of overdensities (or underdensities) as measured in a survey of galaxies.

Since we attribute a distance to the objects based on their redshift, zρ(s) is actually a velocity-

dependent quantity and, if we want to model the real overdensities we have to remove the velocity

dependence of this measurement. Since only the radial component of the velocity affects the redshift

measurement, we will relate the position attributed to the object after it redshift measurement s,

and its real position x through the relation:

s = x− (v · r̂)r̂ , (1)

where v(x) := −u(x)/H, where H = Ha is the conformal Hubble parameter, and u(x) is the

peculiar velocity field [1]. r̂ indicates the radial direction. We can define θ(x) := !x · u(x)/H. In

general the peculiar velocity field can be decomposed as

u(x) = !xΨ+ u
V (x)

where Ψ is a velocity potential, and uV (x) is a divergenceless field representing the vorticity. In

linear theory – and therefore absence of vorticity – we can write the relation between θ and the

matter density field in a non-local way: if the velocity field is obtained from a velocity potential,

then continuity, Euler, and Poisson linearized equations imply that θ is proportional to the matter

density field. This is translated as the fact that the local peculiar velocity field is induced by the

fluctuations of the density field in the neighborhoods.

Given the field zρ(s), we can write its Fourier transform as:

zρ(k) =
1

(2π)3/2

ˆ

zρ(s)ei(k·s)d3s . (2)

Decomposing zρ(k) =
∑ zρlm(k)Ylm(k̂), and expanding ei(k·s) in spherical waves, we obtain:

zρlm(k) = il
√

2

π

ˆ

d3szρ(s)jl(ks)Y
∗
lm(ŝ) . (3)

We remark that the physical number of galaxies must not change depending on the space

parametrization we use, and therefore zρ(s)d3s = ρ(x)d3x. Following [2], we write:
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IV. FORMULAE

general case small angle limit

aIl Pδδ(k) + (2aIl + aIIIl )Pδθ(k) +
(

23

15
aIl + aIIIl − 14

15
aIIl

)

Pθθ(k)
(

Pδδ(k) +
2

3
Pδθ(k) +

1

5
Pθθ(k)

)

δl,0

(aIIIl + aVl )Pδθ(k) +
(

16

21
aIl −

4

3
aIIl + aIIIl + aIVl + aVl

)

Pθθ(k)
(

− 4

3
Pδθ(k)− 4

7
Pθθ(k)

)

δl,2
(

8

35
aIl −

2

5
aIIl + aIVl + aV I

l

)

Pθθ(k)
(

8

35
Pθθ(k)

)

δl,4

âIl Pδδ(k)+(2âIl +âIIIl )Pδθ(k)+

(

23

15
âIl + âIIIl −

14

15
âIIl

)

Pθθ(k) =

(

Pδδ(k) +
2

3
Pδθ(k) +

1

5
Pθθ(k)

)

δl,0

(âIIIl + âVl )Pδθ(k) +

(

16

21
âIl −

4

3
âIIl + âIIIl + âIVl + âVl

)

Pθθ(k) =

(

4

5

r

x′
δl,1 −

4

3
δl,2 −

4

5

r

x′
δl,3

)

Pδθ(k)

+

(

12

35

r

x′
δl,1 −

4

7
δl,2 −

12

35

r

x′
δl,3

)

Pθθ(k)

and

(

8

35
âIl −

2

5
âIIl + âIVl + âV I

l

)

Pθθ(k) =

(

−
16

63

r

x′
δl,3 +

8

35
δl,4 +

16

63

r

x′
δl,5

)

Pθθ(k)

δ(s) = δ(x) − ∂r(u · x̂) +
2

x
u · x̂ (29)
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Figure 3: The sine law applied to the triangle implies that sin φ
r = sin θ

x .

We should now observe that, from sine law for the triangle shown in Fig. 3, the following relation

holds:

sinφ

r
=

sin θ

x
(76)

and, therefore, Eq. (75) can be written as:

(

1

x2
+

1

x′2

)

d

dν

[

(1− ν2)
d

dν

]

j0(kr) = k2
[

−
2

3

x

x′

(

1 +
x′2

x2

)

cosφ j0(kr)

+

(

1 +
x′2

x2

)(

1−
2

3

x

x′
cosφ

)

j2(kr)

−
(

1 +
x′2

x2

)

µ2 j2(kr)

]

(77)

where we call µ = cos θ.

Bonvin & Durrer 11, Challinor & Lewis 11,  Yoo et al. 09, Jeong et 
al. 12,  Bertacca et al. 12
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If we take φ << 1, then sin2(φ/2) ≈ φ2/4 and cos2(φ/2) ≈ 1− φ2/8. Therefore,

r2(φ) = (x− x′)2 + d2φ2 (44)

where we have defined d by

d2 =
1

8
(x2 + 6xx′ + x′2) .

If x ≈ x′, then d ≈ x ≈ x′. According to our previous conventions, ν = cosφ, and therefore

d

dν

(

(1− ν2)
d

dν

)

≈
1

φ

d

dφ
φ

d

dφ
. (45)

We will compute, then, the terms in Eq. (24) in the small angle limit.

5. First contribution

The term:

ˆ

dkk2j0(kr) (Pδδ(k) + 2Pδθ(k) + Pθθ(k))

has no angle dependence and keeps its form in the small angle limit.

6. Second contribution

To compute contribution in the small angle limit we have to calculate:

2

d2

(

1

φ

d

dφ
φ

d

dφ

)

j0(kr(φ)) =
2

d2

[

k

(

1

φ

d

dφ
φ
dr

dφ

)

j′0(kr) + k2
(

dr

dφ

)2

j′′0 (kr)

]

. (46)

We know, however, from Eq. (44), that dr
dφ = d2φ

r .

We will call θ the angle indicated in Fig. 2, and note that in the small angle approximation

cos θ ≈ |x− x′|/r. We will define cos θ := µ. Using Eq. (44), we can write:

2

d2

(

1

φ

d

dφ
φ

d

dφ

)

j0(kr(φ)) = 2k2(1− µ2)j′′0 (kr) + 2k(1 + µ2)
j′0(kr)

r
(47)

From the geometry depicted in Fig. 2 it is easy to see that in the small angle limit, µ can be taken

to be thecosine of the angle formed by the segment r and the line that bisects the angle φ.
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VIII. THE MULTIPOLAR DECOMPOSITION

We shall now show that we can perform a multipolar expanison of Eq. (79), i. e., we shaw

determine the coefficients zξl(r, x′) such that the two-point correlation function zξ(r, x′, µ) can be

written as

zξ(r, x′, µ) =
∞
∑

l=0

zξl(r, x
′)Pl(µ) .

Naturally,

zξl(r, x
′) =

2l + 1

2

ˆ 1

−1
dµ zξ(r, x′, µ)Pl(µ) (113)

where µ = cos θ. We will show that the coefficients zξl(r, x′) are given in terms of power series of

the ratio r/x′.

The geometrical factors multiplying the power spectrum in Eq. (79) depend on the three dis-

tances appearing in the problem (i. e., the distance from the observer to the two points in consid-

eration and the distance between the points considered). It is easy to see, from Fig. 3, that the

variables x and φ are related to r, x′, and θ as:

x = x′
√

1− 2
r

x′
cos θ +

( r

x′

)2
,

cosφ =
1− r

x′ cos θ
√

1− 2 r
x′ cos θ +

(

r
x′

)2
,

sin2 φ =

(

r
x′

)2
(1− cos2 θ)

1− 2 r
x′ cos θ +

(

r
x′

)2 .

We can identify in Eq. (79) seven different types of contributions for the multipolar decompo-

sition. We will calculate them separately.

1. Contribution aIl

aIl =
2l + 1

2

ˆ 1

−1
dµP0(µ)Pl(µ) = δl,0 (114)



From Pápai & Szapudi (2008):

where

294 P. Pápai and I. Szapudi

B123(x, φ1, φ2) = 4
√

7f 2

√
15g1x

ξ 1
3 (x),

B213(x, φ1, φ2) = − 4
√

7f 2

√
15g2x

ξ 1
3 (x),

B110(x, φ1, φ2) = − 4f 2

√
3g1g2x2

ξ 0
0 (x),

B112(x, φ1, φ2) = − 4
√

10f 2

√
3g1g2x2

ξ 0
2 (x), (8)

where ξm
l (x) =

∫
dk/2π2kmjl(xk)P (k) with j being the spherical

Bessel function.
For further elaboration, we choose coordinate system (a)

from Szapudi (2004). This corresponds to our previous
choice of angles with φ1, φ2, with which the Sl1l2l(x̂1, x̂2, x̂) =
Sl1l2l(π/2, φ1, π/2, φ2, π/2, 0) functions can be expressed using
cosines and sines only. Using the same notation as Szapudi (2004)

ξs(φ1,φ2, x) =
∑

n1,n2=0,1,2

an1n2 cos(n1φ1) cos(n2φ2)

+ bn1n2 sin(n1φ1) sin(n2φ2). (9)

Again, for reference, the previously calculated coefficients are

a00 =
(

1 + 2f

3
+ 2f 2

15

)
ξ 2

0 (x)

−
(

f

3
+ 2f 2

21

)
ξ 2

2 (x) + 3f 2

140
ξ 2

4 (x),

a02 = a20 =
(−f

2
− 3f 2

14

)
ξ 2

2 (x) + f 2

28
ξ 2

4 (x),

a22 = f 2

15
ξ 2

0 (x) − f 2

21
ξ 2

2 (x) + 19f 2

140
ξ 2

4 (x),

b22 = f 2

15
ξ 2

0 (x) − f 2

21
ξ 2

2 (x) − 4f 2

35
ξ 2

4 (x); (10)

and the new expressions of this work correspond to

a10 = ã10

g1
=

(
2f + 4f 2

5

)
1

g1x
ξ 1

1 − 1
5

f 2

g1x
ξ 1

3 ,

a01 = ã01

g2
= −

(
2f + 4f 2

5

)
1

g2x
ξ 1

1 + 1
5

f 2

g2x
ξ 1

3 ,

a11 = ã11

g1g2
= 4

3
f 2

g1g2x2
ξ 0

0 − 8
3

f 2

g1g2x2
ξ 0

2 ,

a21 = ã21

g2
= −2

5
f 2

g2x
ξ 1

1 + 3
5

f 2

g2x
ξ 1

3 ,

a12 = ã12

g1
= 2

5
f 2

g1x
ξ 1

1 − 3
5

f 2

g1x
ξ 1

3 ,

b11 = b̃11

g1g2
= 4

3
f 2

g1g2x2
ξ 0

0 + 4
3

f 2

g1g2x2
ξ 0

2 ,

b21 = b̃21

g2
= −2

5
f 2

g2x
ξ 1

1 − 2
5

f 2

g2x
ξ 1

3 ,

b12 = b̃12

g1
= 2

5
f 2

g1x
ξ 1

1 + 2
5

f 2

g1x
ξ 1

3 . (11)

It is worth to emphasize again that the angular dependence g1 and
g2 is suppressed for clarity in the above formulae, but it is obviously
carries through according to the definition of these functions. If
the equivalence of the configurations (φ1, φ2) → (π - φ2, π −
φ1) is taken into account (same pairs can be counted twice), the
number of independent new coefficients is five, i.e. the number
of terms approximately doubled. Next, we explore the relevance

of these calculations, and compare the theoretical predictions with
measurements in dark matter only N-body simulations.

3 DI SCUSSION AND SUMMARY

To understand our results, we expanded our formulae to identify
leading order corrections to the Kaiser limit.

The leading order corrections to the distant observer approx-
imation are second order. Using the notation 1

2 (φ1 + φ2) = φ

and 1
2 (φ2 − φ1) = $φ, and keeping leading order terms in $φ

results in

ξs(φ,$φ, x)
= a00 + 2a02 cos(2φ) + a22 cos2(2φ) + b22 sin2(2φ)

+
[

− 4a02 cos(2φ) − 4a22 − 4b22

]
$φ2

+
[

− 4ã10 cot2(φ) + 4ã11 cot2(φ)

− 4ã12 cot2(φ) cos(2φ) + 4b̃11 − 8b̃12 cos2(φ)

]
$φ2+

+ O($φ4). (12)

The first line of equation (12) corresponds to the Kaiser formula
($α = 0). The next line contains leading order corrections corre-
sponding to previous work only, and the third line collects leading
order corrections from the geometric term in the Jacobian. These are
all of the same order, reassuring the need of keeping the geometric
non-perturbative terms. We conjecture that the terms containing the
cot2(φ) could be responsible for the reported failure of the linear
theory for small angles along the line of sight (Okumura et al. 2008).

As a preliminary test of the validity of our calculations, we
measured correlation functions in the Hubble volume simulation
(Evrard et al. 2002), using cosmological parameters σ 8 = 0.9,
ns = 1, 'm = 0.3, 'λ = 0.7, h = 0.7, 'b h2 = 0.0196 and a volume
of (3000 h−1 Mpc)3, with and without redshift distortions. The vol-
ume of the simulation was divided into 93 subvolumes to obtain the
errorbars.

The left-hand panel of Fig. 1 shows the measured and the the-
oretical two-point functions without redshift distortions. The the-
ory agrees with the measurements only after a shift by a constant.
This is due to the ‘integral constraint’ problem (e.g. Peebles 1980),
possibly compounded with slight non-linear effects. This constant
represents a bias which is approximately equal to the average of
the two-point correlation function over the survey area. It can be
determined several ways (see discussion below).

Next, an observer was placed at the centre of each subvolume and
the mapping between real and redshift space was performed using
the velocities recorded in the simulation. The correlation function
was then measured using brute force counting of pairs in high-
resolution bins matching our choice of coordinate system described
earlier. The right-hand panel of Fig. 1 presents wide-angle redshift
distortion theory both with and without non-perturbative geometric
corrections. The latter cannot be made to agree with the measure-
ments even using a constant offset due to the integral constraint.
In contrast, the theory presented in this paper provides excellent
agreement with the measurements if the effects of integral con-
straint are taken into account. Note that this shift corresponding
to the latter is expected to be larger with redshift distortions in-
cluded simply because the two-point function is enhanced on large
scales.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 389, 292–296

21

−
8

7

x′

x
cosφ sin2 θ = −

4

7
+

2

7
[cos(2φ1) + cos(2φ2)] +

4

7
sin2(φ2 − φ1) , (100)

x′2

x2
sin4 θ = sin2 φ1 sin

2 φ2 , (101)

(

1 +
x′2

x2

)

sin2 θ = 1−
1

2
[cos(2φ1) + cos(2φ2)] , (102)

and

sin2(φ2 − φ1) = sin2 φ , (103)

we recover Eq. (70), after grouping together terms with spherical Bessel function of the same order.

We conclude, then, that the methods here introduced, and the one presented in [6] lead to the

same final result, even if they are presented in different forms. We observe that if one wants to

compute the full sky effects as corrections to the flat sky approximation – as does [6] – then their

method is more suitable. On the other hand, if the full sky calculation is to be performed from the

beginning, then our method is equally good.

VII. THE MULTIPOLAR DECOMPOSITION

We shall now show that we can perform a multipolar expanison of Eq. (70), i. e., we shaw

determine the coefficients zξl(r, x′) such that the two-point correlation function zξ(r, x′, µ) can be

written as

zξ(r, x′, µ) =
∞
∑

l=0

zξl(r, x
′)Pl(µ) .

Naturally,

zξl(r, x
′) =

2l + 1

2

ˆ 1

−1
dµ zξ(r, x′, µ)Pl(µ) (104)

where µ = cos θ. We will show that the coefficients zξl(r, x′) are given in terms of power series of

the ratio r/x′.
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7f 2

√
15g1x

ξ 1
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B112(x, φ1, φ2) = − 4
√

10f 2

√
3g1g2x2

ξ 0
2 (x), (8)

where ξm
l (x) =

∫
dk/2π2kmjl(xk)P (k) with j being the spherical

Bessel function.
For further elaboration, we choose coordinate system (a)

from Szapudi (2004). This corresponds to our previous
choice of angles with φ1, φ2, with which the Sl1l2l(x̂1, x̂2, x̂) =
Sl1l2l(π/2, φ1, π/2, φ2, π/2, 0) functions can be expressed using
cosines and sines only. Using the same notation as Szapudi (2004)

ξs(φ1,φ2, x) =
∑

n1,n2=0,1,2

an1n2 cos(n1φ1) cos(n2φ2)

+ bn1n2 sin(n1φ1) sin(n2φ2). (9)

Again, for reference, the previously calculated coefficients are
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and the new expressions of this work correspond to
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It is worth to emphasize again that the angular dependence g1 and
g2 is suppressed for clarity in the above formulae, but it is obviously
carries through according to the definition of these functions. If
the equivalence of the configurations (φ1, φ2) → (π - φ2, π −
φ1) is taken into account (same pairs can be counted twice), the
number of independent new coefficients is five, i.e. the number
of terms approximately doubled. Next, we explore the relevance

of these calculations, and compare the theoretical predictions with
measurements in dark matter only N-body simulations.

3 DIS C U SSI O N AND SUM M A RY

To understand our results, we expanded our formulae to identify
leading order corrections to the Kaiser limit.

The leading order corrections to the distant observer approx-
imation are second order. Using the notation 1

2 (φ1 + φ2) = φ

and 1
2 (φ2 − φ1) = $φ, and keeping leading order terms in $φ

results in

ξs(φ,$φ, x)
= a00 + 2a02 cos(2φ) + a22 cos2(2φ) + b22 sin2(2φ)

+
[

− 4a02 cos(2φ) − 4a22 − 4b22

]
$φ2

+
[

− 4ã10 cot2(φ) + 4ã11 cot2(φ)

− 4ã12 cot2(φ) cos(2φ) + 4b̃11 − 8b̃12 cos2(φ)

]
$φ2+

+ O($φ4). (12)

The first line of equation (12) corresponds to the Kaiser formula
($α = 0). The next line contains leading order corrections corre-
sponding to previous work only, and the third line collects leading
order corrections from the geometric term in the Jacobian. These are
all of the same order, reassuring the need of keeping the geometric
non-perturbative terms. We conjecture that the terms containing the
cot2(φ) could be responsible for the reported failure of the linear
theory for small angles along the line of sight (Okumura et al. 2008).

As a preliminary test of the validity of our calculations, we
measured correlation functions in the Hubble volume simulation
(Evrard et al. 2002), using cosmological parameters σ 8 = 0.9,
ns = 1, 'm = 0.3, 'λ = 0.7, h = 0.7, 'b h2 = 0.0196 and a volume
of (3000 h−1 Mpc)3, with and without redshift distortions. The vol-
ume of the simulation was divided into 93 subvolumes to obtain the
errorbars.

The left-hand panel of Fig. 1 shows the measured and the the-
oretical two-point functions without redshift distortions. The the-
ory agrees with the measurements only after a shift by a constant.
This is due to the ‘integral constraint’ problem (e.g. Peebles 1980),
possibly compounded with slight non-linear effects. This constant
represents a bias which is approximately equal to the average of
the two-point correlation function over the survey area. It can be
determined several ways (see discussion below).

Next, an observer was placed at the centre of each subvolume and
the mapping between real and redshift space was performed using
the velocities recorded in the simulation. The correlation function
was then measured using brute force counting of pairs in high-
resolution bins matching our choice of coordinate system described
earlier. The right-hand panel of Fig. 1 presents wide-angle redshift
distortion theory both with and without non-perturbative geometric
corrections. The latter cannot be made to agree with the measure-
ments even using a constant offset due to the integral constraint.
In contrast, the theory presented in this paper provides excellent
agreement with the measurements if the effects of integral con-
straint are taken into account. Note that this shift corresponding
to the latter is expected to be larger with redshift distortions in-
cluded simply because the two-point function is enhanced on large
scales.
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same final result, even if they are presented in different forms. We observe that if one wants to

compute the full sky effects as corrections to the flat sky approximation – as does [6] – then their

method is more suitable. On the other hand, if the full sky calculation is to be performed from the

beginning, then our method is equally good.
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expanded in bipolar spherical harmonics (or any other way), would
contribute infinite coefficients. Because of the presumed subdomi-
nance due to the prefactor, and complexity of the calculation, this
term was neglected in all previous coordinate space expressions,
although it is represented in the ω-space expansion of Hamilton
& Culhane (1996). In this paper, we introduce a hybrid approach,
where we leave the essentially non-perturbative terms in the ex-
pansion intact; our tripolar expansion coefficients will still contain
angular variables in a specific way. As we show later, this hybrid pro-
cedure results in a finite number of terms, and it provides significant
corrections and improvement in the agreement with simulations. In
retrospect, the omission of this term, while intuitively reasonable, is
not justified, as its contribution can become important on the most
interesting scales of tens of h−1 Mpc’s.

In the next Section 2, we present the theory of linear redshift dis-
tortions including results from the geometric term in the Jacobian.
We follow closely the formalism of Szapudi (2004), mainly focus-
ing on the new aspects of this calculation. For reference, we print
the full result, which has about twice as many terms as previously. In
Section 3, we compare our results with preliminary measurements
in the Hubble volume simulations, and present our conclusions.

2 R EDSHIFT DISTORTION OF THE
T WO - P O I N T C O R R E L AT I O N F U N C T I O N

We use linear perturbation theory to predict the redshift distorted
two-point correlation function in terms of the underlying power
spectrum. Our calculation is based directly on the tripolar expansion
formalism of Szapudi (2004), therefore our focus will be on the
additional terms arising from the Jacobian.

The exact mapping between real and redshift space is si = xi −
f vj x̂i x̂j , where the ‘hat’ denotes the proper unit vector, f = "0.6

b
,

and the velocity has units which provides that its divergence is
equal to the density up to linear order. From this, one can calculate
the derivative of this matrix: ∂si/∂xk = δik + Oik(v), where O is
linear in v. This results in a linear Jacobian J = 1 + TrO =
1 − f x̂i x̂j∂ivj − 2f

xj vj

x2 . The last term in the previous expression
is usually omitted due to the fact that it scales with 1/x, i.e. it would
tend to zero for large distances, which loosely correspond to large
angles as well. Closer examination of this term shows that it is of the
same order as the previous term, not only in perturbation expansion
(linear), but also of the order of magnitude. Our goal is to propagate
this new term through the full calculation.

The linear density contrast and the two-point function can be
expressed in the usual fashion:

δs(x) =
∫

d3k

(2π)3
eikj xj

[
1 + f (x̂j k̂j )2 − i2f

x̂j k̂j

xk

]
δ(k), (1)

〈
δs(x1)δ∗

s (x2)
〉

=
∫

d3k

(2π)3
P (k)eik(x1−x2)

[
1 + f

3
+ 2f

3
P2(x̂1k̂) − i2f

x1k
P1(x̂1k̂)

]

[
1 + f

3
+ 2f

3
P2(x̂2k̂) + i2f

x2k
P1(x̂2k̂)

]
, (2)

where P1 and P2 are Legendre polynomials, and P(k) is the linear
power spectrum. The third term in each of the brackets corresponds
to the extension of the previous results; these would tend to zero in
the plane-parallel limit. At wide angles, the separation between the
galaxies, and the distance between a galaxy and the observer are
of the same order, therefore kx is of the order of unity. This shows

explicitly that the order of this term can be as large as the previous,
and the detailed calculation confirms this.

Next we express the angular dependence of the correlation func-
tion with tripolar spherical harmonics:

Sl1l2l(x̂1, x̂2, x̂)

≡
∑

m1,m2,m

(
l1 l2 l

m1 m2 m

)
Cl1m1 (x̂1)Cl2m2 (x̂2)Clm(x̂). (3)

We use x for denoting x1 − x2. On the right-hand side, one can
find the Wigner 3j symbols and we define the normalized spherical
functions as Clm =

√
4π/2l + 1Ylm; these latter result in simpler

expressions.
Equation (2) has become more complex with the additions, x1

and x2 appear in the denominator resulting in the following angular
dependence:

x1 = g1x = sin(φ2)
sin(φ2 − φ1)

x, (4)

x2 = g2x = sin(φ1)
sin(φ2 − φ1)

x. (5)

Expanding these terms into tripolar spherical harmonics would yield
infinite terms, but simplification arises from the fact that they can
be factored out of the integrals. All the rest can be expanded as in
Szapudi (2004), resulting in finite expressions. We introduce φ1 to
denote the angle between x̂1 and x̂, and φ2 for the angle between
x̂2 and x̂. We emphasize that the coefficients of this (quasi-)tripolar
expansion still has an angular dependence in the form of g1 and g2:

ξ s =
∑

l1l2l

Bl1l2l(x, φ1, φ2)Sl1l2l(x̂1, x̂2, x̂). (6)

After performing the expansions, only a finite number of coefficients
survive. For reference, the ones from Szapudi (2004) are:

B000(x) =
(

1 + 1
3
f

)2

ξ 2
0 (x),

B220(x) = 4

9
√

5
f 2ξ 2

0 (x),

B022(x) = B202(x) = −
(

2
3
f + 2

9
f 2

) √
5ξ 2

2 (x),

B222(x) = 4
√

10

9
√

7
f 2ξ 2

2 (x),

B224(x) = 4
√

2√
35

f 2ξ 2
4 (x); (7)

and the new terms, the main result of this paper, are

B101(x, φ1, φ2) = −
(

2f + 2
3
f 2

) √
3

g1x
ξ 1

1 (x),

B011(x, φ1, φ2) =
(

2f + 2
3
f 2

) √
3

g2x
ξ 1

1 (x),

B121(x, φ1, φ2) = 4
√

2√
15

f 2 1
g1x

ξ 1
1 (x),

B211(x, φ1, φ2) = −4
√

2√
15

f 2 1
g2x

ξ 1
1 (x),
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expanded in bipolar spherical harmonics (or any other way), would
contribute infinite coefficients. Because of the presumed subdomi-
nance due to the prefactor, and complexity of the calculation, this
term was neglected in all previous coordinate space expressions,
although it is represented in the ω-space expansion of Hamilton
& Culhane (1996). In this paper, we introduce a hybrid approach,
where we leave the essentially non-perturbative terms in the ex-
pansion intact; our tripolar expansion coefficients will still contain
angular variables in a specific way. As we show later, this hybrid pro-
cedure results in a finite number of terms, and it provides significant
corrections and improvement in the agreement with simulations. In
retrospect, the omission of this term, while intuitively reasonable, is
not justified, as its contribution can become important on the most
interesting scales of tens of h−1 Mpc’s.

In the next Section 2, we present the theory of linear redshift dis-
tortions including results from the geometric term in the Jacobian.
We follow closely the formalism of Szapudi (2004), mainly focus-
ing on the new aspects of this calculation. For reference, we print
the full result, which has about twice as many terms as previously. In
Section 3, we compare our results with preliminary measurements
in the Hubble volume simulations, and present our conclusions.

2 R EDSHIF T D I S TORTION OF THE
T WO - P O I N T C O R R E L AT I O N F U N C T I O N

We use linear perturbation theory to predict the redshift distorted
two-point correlation function in terms of the underlying power
spectrum. Our calculation is based directly on the tripolar expansion
formalism of Szapudi (2004), therefore our focus will be on the
additional terms arising from the Jacobian.

The exact mapping between real and redshift space is si = xi −
f vj x̂i x̂j , where the ‘hat’ denotes the proper unit vector, f = "0.6

b
,

and the velocity has units which provides that its divergence is
equal to the density up to linear order. From this, one can calculate
the derivative of this matrix: ∂si/∂xk = δik + Oik(v), where O is
linear in v. This results in a linear Jacobian J = 1 + TrO =
1 − f x̂i x̂j∂ivj − 2f

xj vj

x2 . The last term in the previous expression
is usually omitted due to the fact that it scales with 1/x, i.e. it would
tend to zero for large distances, which loosely correspond to large
angles as well. Closer examination of this term shows that it is of the
same order as the previous term, not only in perturbation expansion
(linear), but also of the order of magnitude. Our goal is to propagate
this new term through the full calculation.

The linear density contrast and the two-point function can be
expressed in the usual fashion:

δs(x) =
∫

d3k

(2π)3
eikj xj

[
1 + f (x̂j k̂j )2 − i2f

x̂j k̂j

xk

]
δ(k), (1)

〈
δs(x1)δ∗

s (x2)
〉

=
∫

d3k

(2π)3
P (k)eik(x1−x2)

[
1 + f

3
+ 2f

3
P2(x̂1k̂) − i2f

x1k
P1(x̂1k̂)

]

[
1 + f

3
+ 2f

3
P2(x̂2k̂) + i2f

x2k
P1(x̂2k̂)

]
, (2)

where P1 and P2 are Legendre polynomials, and P(k) is the linear
power spectrum. The third term in each of the brackets corresponds
to the extension of the previous results; these would tend to zero in
the plane-parallel limit. At wide angles, the separation between the
galaxies, and the distance between a galaxy and the observer are
of the same order, therefore kx is of the order of unity. This shows

explicitly that the order of this term can be as large as the previous,
and the detailed calculation confirms this.

Next we express the angular dependence of the correlation func-
tion with tripolar spherical harmonics:

Sl1l2l(x̂1, x̂2, x̂)

≡
∑

m1,m2,m

(
l1 l2 l

m1 m2 m

)
Cl1m1 (x̂1)Cl2m2 (x̂2)Clm(x̂). (3)

We use x for denoting x1 − x2. On the right-hand side, one can
find the Wigner 3j symbols and we define the normalized spherical
functions as Clm =

√
4π/2l + 1Ylm; these latter result in simpler

expressions.
Equation (2) has become more complex with the additions, x1

and x2 appear in the denominator resulting in the following angular
dependence:

x1 = g1x = sin(φ2)
sin(φ2 − φ1)

x, (4)

x2 = g2x = sin(φ1)
sin(φ2 − φ1)

x. (5)

Expanding these terms into tripolar spherical harmonics would yield
infinite terms, but simplification arises from the fact that they can
be factored out of the integrals. All the rest can be expanded as in
Szapudi (2004), resulting in finite expressions. We introduce φ1 to
denote the angle between x̂1 and x̂, and φ2 for the angle between
x̂2 and x̂. We emphasize that the coefficients of this (quasi-)tripolar
expansion still has an angular dependence in the form of g1 and g2:

ξ s =
∑

l1l2l

Bl1l2l(x, φ1, φ2)Sl1l2l(x̂1, x̂2, x̂). (6)

After performing the expansions, only a finite number of coefficients
survive. For reference, the ones from Szapudi (2004) are:

B000(x) =
(

1 + 1
3
f

)2

ξ 2
0 (x),

B220(x) = 4

9
√

5
f 2ξ 2

0 (x),

B022(x) = B202(x) = −
(

2
3
f + 2

9
f 2

) √
5ξ 2

2 (x),

B222(x) = 4
√

10

9
√

7
f 2ξ 2

2 (x),

B224(x) = 4
√

2√
35

f 2ξ 2
4 (x); (7)

and the new terms, the main result of this paper, are

B101(x, φ1, φ2) = −
(

2f + 2
3
f 2

) √
3

g1x
ξ 1

1 (x),

B011(x, φ1, φ2) =
(

2f + 2
3
f 2

) √
3

g2x
ξ 1

1 (x),

B121(x, φ1, φ2) = 4
√

2√
15

f 2 1
g1x

ξ 1
1 (x),

B211(x, φ1, φ2) = −4
√

2√
15

f 2 1
g2x

ξ 1
1 (x),
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B123(x, φ1, φ2) = 4
√

7f 2

√
15g1x

ξ 1
3 (x),

B213(x, φ1, φ2) = − 4
√

7f 2

√
15g2x

ξ 1
3 (x),

B110(x, φ1, φ2) = − 4f 2

√
3g1g2x2

ξ 0
0 (x),

B112(x, φ1, φ2) = − 4
√

10f 2

√
3g1g2x2

ξ 0
2 (x), (8)

where ξm
l (x) =

∫
dk/2π2kmjl(xk)P (k) with j being the spherical

Bessel function.
For further elaboration, we choose coordinate system (a)

from Szapudi (2004). This corresponds to our previous
choice of angles with φ1, φ2, with which the Sl1l2l(x̂1, x̂2, x̂) =
Sl1l2l(π/2, φ1, π/2, φ2, π/2, 0) functions can be expressed using
cosines and sines only. Using the same notation as Szapudi (2004)

ξs(φ1,φ2, x) =
∑

n1,n2=0,1,2

an1n2 cos(n1φ1) cos(n2φ2)

+ bn1n2 sin(n1φ1) sin(n2φ2). (9)

Again, for reference, the previously calculated coefficients are

a00 =
(

1 + 2f

3
+ 2f 2

15

)
ξ 2

0 (x)

−
(

f

3
+ 2f 2

21

)
ξ 2

2 (x) + 3f 2

140
ξ 2

4 (x),

a02 = a20 =
(−f

2
− 3f 2

14

)
ξ 2

2 (x) + f 2

28
ξ 2

4 (x),

a22 = f 2

15
ξ 2

0 (x) − f 2

21
ξ 2

2 (x) + 19f 2

140
ξ 2

4 (x),

b22 = f 2

15
ξ 2

0 (x) − f 2

21
ξ 2

2 (x) − 4f 2

35
ξ 2

4 (x); (10)

and the new expressions of this work correspond to

a10 = ã10

g1
=

(
2f + 4f 2

5

)
1

g1x
ξ 1

1 − 1
5

f 2

g1x
ξ 1

3 ,

a01 = ã01

g2
= −

(
2f + 4f 2

5

)
1

g2x
ξ 1

1 + 1
5

f 2

g2x
ξ 1

3 ,

a11 = ã11

g1g2
= 4

3
f 2

g1g2x2
ξ 0

0 − 8
3

f 2

g1g2x2
ξ 0

2 ,

a21 = ã21

g2
= −2

5
f 2

g2x
ξ 1

1 + 3
5

f 2

g2x
ξ 1

3 ,

a12 = ã12

g1
= 2

5
f 2

g1x
ξ 1

1 − 3
5

f 2

g1x
ξ 1

3 ,

b11 = b̃11

g1g2
= 4

3
f 2

g1g2x2
ξ 0

0 + 4
3

f 2

g1g2x2
ξ 0

2 ,

b21 = b̃21

g2
= −2

5
f 2

g2x
ξ 1

1 − 2
5

f 2

g2x
ξ 1

3 ,

b12 = b̃12

g1
= 2

5
f 2

g1x
ξ 1

1 + 2
5

f 2

g1x
ξ 1

3 . (11)

It is worth to emphasize again that the angular dependence g1 and
g2 is suppressed for clarity in the above formulae, but it is obviously
carries through according to the definition of these functions. If
the equivalence of the configurations (φ1, φ2) → (π - φ2, π −
φ1) is taken into account (same pairs can be counted twice), the
number of independent new coefficients is five, i.e. the number
of terms approximately doubled. Next, we explore the relevance

of these calculations, and compare the theoretical predictions with
measurements in dark matter only N-body simulations.

3 DISCUSSI ON AN D SUMMARY

To understand our results, we expanded our formulae to identify
leading order corrections to the Kaiser limit.

The leading order corrections to the distant observer approx-
imation are second order. Using the notation 1

2 (φ1 + φ2) = φ

and 1
2 (φ2 − φ1) = $φ, and keeping leading order terms in $φ

results in

ξs(φ,$φ, x)
= a00 + 2a02 cos(2φ) + a22 cos2(2φ) + b22 sin2(2φ)

+
[

− 4a02 cos(2φ) − 4a22 − 4b22

]
$φ2

+
[

− 4ã10 cot2(φ) + 4ã11 cot2(φ)

− 4ã12 cot2(φ) cos(2φ) + 4b̃11 − 8b̃12 cos2(φ)

]
$φ2+

+ O($φ4). (12)

The first line of equation (12) corresponds to the Kaiser formula
($α = 0). The next line contains leading order corrections corre-
sponding to previous work only, and the third line collects leading
order corrections from the geometric term in the Jacobian. These are
all of the same order, reassuring the need of keeping the geometric
non-perturbative terms. We conjecture that the terms containing the
cot2(φ) could be responsible for the reported failure of the linear
theory for small angles along the line of sight (Okumura et al. 2008).

As a preliminary test of the validity of our calculations, we
measured correlation functions in the Hubble volume simulation
(Evrard et al. 2002), using cosmological parameters σ 8 = 0.9,
ns = 1, 'm = 0.3, 'λ = 0.7, h = 0.7, 'b h2 = 0.0196 and a volume
of (3000 h−1 Mpc)3, with and without redshift distortions. The vol-
ume of the simulation was divided into 93 subvolumes to obtain the
errorbars.

The left-hand panel of Fig. 1 shows the measured and the the-
oretical two-point functions without redshift distortions. The the-
ory agrees with the measurements only after a shift by a constant.
This is due to the ‘integral constraint’ problem (e.g. Peebles 1980),
possibly compounded with slight non-linear effects. This constant
represents a bias which is approximately equal to the average of
the two-point correlation function over the survey area. It can be
determined several ways (see discussion below).

Next, an observer was placed at the centre of each subvolume and
the mapping between real and redshift space was performed using
the velocities recorded in the simulation. The correlation function
was then measured using brute force counting of pairs in high-
resolution bins matching our choice of coordinate system described
earlier. The right-hand panel of Fig. 1 presents wide-angle redshift
distortion theory both with and without non-perturbative geometric
corrections. The latter cannot be made to agree with the measure-
ments even using a constant offset due to the integral constraint.
In contrast, the theory presented in this paper provides excellent
agreement with the measurements if the effects of integral con-
straint are taken into account. Note that this shift corresponding
to the latter is expected to be larger with redshift distortions in-
cluded simply because the two-point function is enhanced on large
scales.
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zξl(r, x
′) =

1

2π2

{

ˆ

dkk2j0(kr)

[

aIl

(

Pδδ(k) + 2Pδθ(k) +
23

15
Pθθ(k)

)

+aIIIl (Pδθ(k) + Pθθ(k)) +

(

aV II
l

(kr)2
−

14

15
aIIl

)

Pθθ(k)

]

+

ˆ

dkk2j2(kr)

[

(aIIIl + aVl )(Pδθ(k) + Pθθ(k)) +

(

16

21
aIl +

aV II
l

(kr)2
−

4

3
aIIl + aIVl

)

Pθθ(k)

]

+

ˆ

dkk2j4(kr)

[

8

35
aIl −

2
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aIIl + aIVl + aV I

l

]

Pθθ(k)

}

. (124)

However, using Eq. (56), we can write

aV II
l

j2(kr)

(kr)2
= aV II

l

(

1

15
j0(kr) +

2

21
j2(kr) +

1

35
j4(kr)

)

, (125)

and therefore Eq. (124) becomes:
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ˆ
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[
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(
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2
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aV II
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8

35
aIl −

2
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l +
1

35
aV II
l

]

Pθθ(k)

}

. (126)

If Pδδ(k) = P (k), Pδθ(k) = βP (k), and Pθθ(k) = β2P (k), we see that the momenta integrals to

be performed are:

ˆ

dk k2j0(kr)P (k) ,

ˆ

dk k2j2(kr)P (k) ,

ˆ

dk k2j4(kr)P (k) ,

and
ˆ

dk k2
j0(kr)

(kr)2
P (k) .

A. A particular case and comparison with small angle limit

We will now perform two simplifications. First we will neglect the contribution of the terms aV II
l .

This approximation is justified because aV II
l is the most suppressed among all the contributions.
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[

aIl

(

Pδδ(k) + 2Pδθ(k) +
23

15
Pθθ(k)

)

+aIIIl (Pδθ(k) + Pθθ(k)) +

(

aV II
l

(kr)2
−

14

15
aIIl

)

Pθθ(k)

]

+

ˆ

dkk2j2(kr)

[

(aIIIl + aVl )(Pδθ(k) + Pθθ(k)) +

(

16

21
aIl +

aV II
l

(kr)2
−

4

3
aIIl + aIVl

)

Pθθ(k)

]

+

ˆ

dkk2j4(kr)

[

8

35
aIl −

2

5
aIIl + aIVl + aV I

l

]

Pθθ(k)

}

. (124)

However, using Eq. (56), we can write

aV II
l

j2(kr)

(kr)2
= aV II

l

(

1

15
j0(kr) +

2

21
j2(kr) +

1

35
j4(kr)

)

, (125)

and therefore Eq. (124) becomes:
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23

15
Pθθ(k)

)

+aIIIl (Pδθ(k) + Pθθ(k)) +

(

aV II
l

[

1

15
+

1

(kr)2

]

−
14

15
aIIl

)

Pθθ(k)

]

+

ˆ

dkk2j2(kr)

[

(aIIIl + aVl )(Pδθ(k) + Pθθ(k)) +

(

16

21
aIl +

2

21
aV II
l −

4

3
aIIl + aIVl

)

Pθθ(k)

]

+

ˆ

dkk2j4(kr)

[

8

35
aIl −

2

5
aIIl + aIVl + aV I

l +
1

35
aV II
l

]

Pθθ(k)

}

. (126)

If Pδδ(k) = P (k), Pδθ(k) = βP (k), and Pθθ(k) = β2P (k), we see that the momenta integrals to

be performed are:

ˆ

dk k2j0(kr)P (k) ,

ˆ

dk k2j2(kr)P (k) ,

ˆ

dk k2j4(kr)P (k) ,

and
ˆ

dk k2
j0(kr)

(kr)2
P (k) .

A. A particular case and comparison with small angle limit

We will now perform two simplifications. First we will neglect the contribution of the terms aV II
l .

This approximation is justified because aV II
l is the most suppressed among all the contributions.

Papai & Szapudi, 2008, Raccanelli et al. 2010, Montanari & Durrer 2012
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VIII. THE MULTIPOLAR DECOMPOSITION

We shall now show that we can perform a multipolar expanison of Eq. (79), i. e., we shaw

determine the coefficients zξl(r, x′) such that the two-point correlation function zξ(r, x′, µ) can be

written as

zξ(r, x′, µ) =
∞
∑

l=0

zξl(r, x
′)Pl(µ) .

Naturally,

zξl(r, x
′) =

2l + 1

2

ˆ 1

−1
dµ zξ(r, x′, µ)Pl(µ) (113)

where µ = cos θ. We will show that the coefficients zξl(r, x′) are given in terms of power series of

the ratio r/x′.

The geometrical factors multiplying the power spectrum in Eq. (79) depend on the three dis-

tances appearing in the problem (i. e., the distance from the observer to the two points in consid-

eration and the distance between the points considered). It is easy to see, from Fig. 3, that the

variables x and φ are related to r, x′, and θ as:

x = x′
√

1− 2
r

x′
cos θ +

( r

x′

)2
,

cosφ =
1− r

x′ cos θ
√

1− 2 r
x′ cos θ +

(

r
x′

)2
,

sin2 φ =

(

r
x′

)2
(1− cos2 θ)

1− 2 r
x′ cos θ +

(

r
x′

)2 .

We can identify in Eq. (79) seven different types of contributions for the multipolar decompo-

sition. We will calculate them separately.

1. Contribution aIl

aIl =
2l + 1

2

ˆ 1

−1
dµP0(µ)Pl(µ) = δl,0 (114)
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zξ(x, x′, r) =
1

2π2

{

ˆ

dkk2j0(kr)P0(µ) (Pδδ(k) + 2Pδθ(k) + Pθθ(k))

−
4

3

ˆ

dkk2 [j0(kr)P0(µ) + j2(kr)P2(µ)] (Pδθ(k) + Pθθ(k))

+

ˆ

dkk2
[

8

15
j0(kr)P0(µ) +

16

21
j2(kr)P2(µ) +

8

35
j4(kr)P4(µ)

]

Pθθ(k)

}

. (50)

We can, however, rewrite Eq. (50) as:

zξ(x, x′, r) =
1

2π2

{

[
ˆ

dkk2j0(kr)

(

Pδδ(k) +
2

3
Pδθ(k) +

1

5
Pθθ(k)

)]

P0(µ)

−
[
ˆ

dkk2j2(kr)

(

4

3
Pδθ(k) +

4

7
Pθθ(k)

)]

P2(µ)

+

[
ˆ

dkk2j4(kr)

(

8

35
Pθθ(k)

)]

P4(µ)

}

, (51)

that is nothing but the expansion of zξ(x, x′, r) in Legendre polynomials:

zξ(x, x′, r) =
∑

l=0,2,4

zξl(r)Pl(µ) (52)

where the coefficients zξl(r) can be directly read from Eq. (51):

zξ0(r) =
1

2π2

ˆ

dkk2j0(kr)

(

Pδδ(k) +
2

3
Pδθ(k) +

1

5
Pθθ(k)

)

, (53)

zξ2(r) = −
1

2π2

ˆ

dkk2j2(kr)

(

4

3
Pδθ(k) +

4

7
Pθθ(k)

)

, (54)

zξ2(r) =
1

2π2

ˆ

dkk2j4(kr)
8

35
Pθθ(k) . (55)

As the expansion coefficients for the two-point correlation function are related to the coefficients

for the expansion in Legendre polynomials of the power spectrum through the relation:

zPl(k) = 2(−i)l
ˆ

dr

(2π)1/2
r2jl(kr)

zξl(r) , (56)

we need only to apply the orthogonality relation given in Eq. (17) to determine the expansion

coefficients of the power spectrum:
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zρlm(k) = il
√

2

π

ˆ

d3xρ(x)jl(k(r − vr))Y
∗
lm(x̂)

= ρlm(k) + il
√

2

π

ˆ

d3xρ0j
′
l(kr)(−kvr(x))Y

∗
lm(x̂)

= ρlm(k) +
2

π
ρ0

ˆ

dk′
ˆ

drr2j′l(k
′r)j′l(kr)kk

′θlm(k′) (4)

after expanding jl(k(r−vr)) in Taylor series and taking vr to be small, and using that vr = − 1
H

∂
∂rΨ,

"Ψ = θ (or, in other terms, assuming linear regime).

We can rephrase our object of study in a more compact way:

zδlm(k) = δlm(k) +

ˆ

dk′Nl(k, k
′)θlm(k′) , (5)

where

Nl(k, k
′) =

2

π

ˆ

drr2j′l(k
′r)j′l(kr)kk

′ . (6)

II. TWO-POINT CORRELATION FUNCTION

We want to calculate:

zξ(x,x′) := 〈zδ(x) zδ(x′)∗〉 (7)

where

zδ(x) =
∑

l,m

(−i)l
√

2

π

ˆ

dkk2jl(kx)
zδlm(k)Ylm(x̂) . (8)
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√

2

π

ˆ

d3xρ(x)jl(k(r − vr))Y
∗
lm(x̂)

= ρlm(k) + il
√

2

π

ˆ

d3xρ0j
′
l(kr)(−kvr(x))Y

∗
lm(x̂)

= ρlm(k) +
2

π
ρ0

ˆ

dk′
ˆ

drr2j′l(k
′r)j′l(kr)kk

′θlm(k′) (4)
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We can rephrase our object of study in a more compact way:

zδlm(k) = δlm(k) +

ˆ

dk′Nl(k, k
′)θlm(k′) , (5)

where

Nl(k, k
′) =

2

π

ˆ

drr2j′l(k
′r)j′l(kr)kk

′ . (6)

II. TWO-POINT CORRELATION FUNCTION

We want to calculate:

zξ(x,x′) := 〈zδ(x) zδ(x′)∗〉 (7)

where

zδ(x) =
∑

l,m

(−i)l
√

2

π

ˆ

dkk2jl(kx)
zδlm(k)Ylm(x̂) . (8)
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Let’s take the term proportional to Nl. Using the fact that (see Eq. (B10))

Nl(k, k
′) = δ(k − k′)−

l(l + 1)

(2l + 1)

kl<
kl+1
>

,

where k< = min{k, k′} and k> = max{k, k′}, we can write:

∑

l

(2l + 1)

4π
Nl(k, k

′)

(

Pδθ(k)

k2
+

Pδθ(k′)

k′2

)

Pl(k̂ · k̂′) =

{

2
Pδθ(k)

k2
δ(k − k′)

−
∑

l

l(l + 1)

4π

kl<
kl+1
>

(

Pδθ(k)

k2
+

Pδθ(k′)

k′2

)

}

Pl(k̂ · k̂′)

=

{

2
Pδθ(k)

k2
δ(k − k′) +

1

4π

(

Pδθ(k)

k2
+

Pδθ(k′)

k′2

)

×
∂

∂γ

[

(1− γ2)
∂

∂γ

]

∑

l

kl<
kl+1
>

}

Pl(k̂ · k̂′) , (35)

where γ := k̂ · k̂′. Recognizing the identity [7]:

1

|k− k′|
=

∞
∑

l=0

kl<
kl+1
>

Pl(k̂ · k̂′) (36)

yields:

∑

l

(2l + 1)

4π
Nl(k, k

′)

(

Pδθ(k)

k2
+

Pδθ(k′)

k′2

)

Pl(k̂ · k̂′) = 2
Pδθ(k)

k2
δ(k − k′) +

1

4π

(

Pδθ(k)

k2
+

Pδθ(k′)

k′2

)

×
∂

∂γ

[

(1− γ2)
∂

∂γ

]

1

|k− k′|
. (37)

Consider now:

∑

l

(2l + 1)

4π

ˆ

dk′′Nl(k, k
′′)Nl(k

′′, k′)
Pθθ(k′′)

k′′2
Pl(k̂ · k̂′) =

{

Pθθ(k)

k2
δ(k − k′)

+
1

4π

(

Pθθ(k)

k2
+

Pθθ(k′)

k′2

)

∂

∂γ

[

(1− γ2)
∂

∂γ

]

1

|k− k′|

+
∑

l

(2l + 1)

4π

ˆ

dk′′Il(k, k′′)Il(k′′, k′)
Pθθ(k′′)

k′′2

}

Pl(k̂ · k̂′) (38)

where we are writing Nl(k, k′) = δ(k − k′)− Il(k, k′) (see Eq. (B4)).

Schematic calculation:

The two point correlation function in redshift space is given by:

where, the spherically decomposed density field is:

assuming that peculiar velocities are small, first order perturbation theory allow us to write:

with the kernel
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Using again Eq. (12), we obtain, finally:

A(x,x′) = 2

ˆ

dkk2Pδθ(k)j0(kr) +
d

dν

[

(1− ν2)
d

dν

]
ˆ

dkj0(kr)Pδθ(k)

(

1

x2
+

1

x′2

)

(21)

where r2 = x2 + x′2 − 2xx′ν.

3. The term B(x,x′)

We shall first establish the form of the integral
´

dk′′Nl(k, k′′)Nl(k′, k′′)
Pθθ(k

′′)
k′′2 . For this sake we

should keep in mind Eq. (15).

ˆ

dk′′Nl(k, k
′′)Nl(k

′, k′′)
Pθθ(k′′)

k′′2
=

Pθθ(k)

k2
δ(k − k′)−

2

π
l(l + 1)

ˆ

dyjl(ky)jl(k
′y)

×
(

Pθθ(k)

k2
+

Pθθ(k′)

k′2

)

+
4

π2
[l(l + 1)]2

ˆ

dk′′
ˆ

dy

×
ˆ

dy′jl(ky)jl(k
′′y)jl(k

′y′)jl(k
′′y′)

Pθθ(k′′)

k′′2
. (22)

By inserting Eq. (22) into Eq. (14) and using Eqs. (19), (12) and (17), we obtain:

B(x,x′) =

ˆ

dkk2j0(kr)Pθθ(k) +
d

dν

[

(1− ν2)
d

dν

]
ˆ

dkj0(kr)Pθθ(k)

(

1

x2
+

1

x′2

)

+

[

d

dν

(

(1− ν2)
d

dν

)]2 ˆ

dkj0(kr)
Pθθ(k)

k2
1

x2x′2
(23)

4. Final form of two-point correlation function

Inserting back Eqs. (21) and (23) into Eq. (11), we obtain:

zξ(x,x′) =
1

2π2

ˆ

dkk2j0(kr) (Pδδ(k) + 2Pδθ(k) + Pθθ(k))

+
1

2π2

d

dν

[

(1− ν2)
d

dν

]
ˆ

dkj0(kr) (Pδθ(k) + Pθθ(k))

(

1

x2
+

1

x′2

)

+
1

2π2

[

d

dν

(

(1− ν2)
d

dν

)]2 ˆ

dkj0(kr)
Pθθ(k)

k2
1

x2x′2
(24)

9

∑

l

(2l + 1)

4π

ˆ

dk′′Il(k, k′′)Il(k′′, k′)
Pθθ(k′′)

k′′2
Pl(k̂ · k̂′)

=
∑

lm

ˆ

dk′′Il(k, k′′)Il(k′′, k′)
Pθθ(k′′)

k′′2
Ylm(k̂)Y∗

lm(k̂′)

=
∑

lm

ˆ

d2k̂′′
ˆ

dk′′Il(k, k′′)Il(k′′, k′)
Pθθ(k′′)

k′′2
Ylm(k̂)Y∗

lm(k̂′′)δ(k̂′ − k̂
′′)

=
∑

lm

ˆ

d2k̂′′
ˆ

dk′′Il(k, k′′)Il(k′′, k′)
Pθθ(k′′)

k′′2
Ylm(k̂)

[

∑

l′m′

Y∗
l′m′(k̂′)Yl′m′(k̂′′)

]

Y∗
lm(k̂′′)

=
∑

lm

∑

l′m′

ˆ

d2k̂′′
ˆ

dk′′Il(k, k′′)Il′(k′′, k′)
Pθθ(k′′)

k′′2
Ylm(k̂)Y∗

l′m′(k̂′)Yl′m′(k̂′′)Y∗
lm(k̂′′) . (39)

Here we could change the index of one of the Il because, if we perform the integral in k̂′′ we obtain

δmm′δll′ . Consequently,

∑

l

(2l + 1)

4π

ˆ

dk′′Il(k, k′′)Il(k′′, k′)
Pθθ(k′′)

k′′2
Pl(k̂ · k̂′)

=

ˆ

d2k̂′′
ˆ

dk′′
Pθθ(k′′)

k′′2

[

∑

lm

l(l + 1)

(2l + 1)

kl<
kl+1
>

Ylm(k̂)Y∗
lm(k̂′′)

][

∑

l′m′

l′(l′ + 1)

(2l′ + 1)

kl
′

<

kl
′+1
>

Yl′m′(k̂′′)Y∗
l′m′(k̂′)

]

=
1

(4π)2

ˆ

d2k̂′′ ∂

∂γ1

[

(1− γ21)
∂

∂γ1

]

∂

∂γ2

[

(1− γ22)
∂

∂γ2

]
ˆ

dk′′
1

|k− k′′|
Pθθ(k′′)

k′′2
1

|k′′ − k′|
. (40)

Here γ1 := k̂ · k̂′′, and γ2 := k̂′′ · k̂′.

Recollecting the results, we have:

〈zδ(k), zδ(k′)∗〉 = (Pδδ(k) + 2Pδθ(k) + Pθθ(k)) δ(k− k
′)

+
1

4π

[(

Pδθ(k)

k2
+

Pθθ(k)

k2

)

+

(

Pδθ(k′)

k′2
+

Pθθ(k′)

k′2

)]

∂

∂γ

[

(1− γ2)
∂

∂γ

]

1

|k− k′|

+
1

(4π)2

ˆ

d2k̂′′ ∂

∂γ1

[

(1− γ21)
∂

∂γ1

]

∂

∂γ2

[

(1− γ22)
∂

∂γ2

]

×
ˆ

dk′′
1

|k− k′′|
Pθθ(k′′)

k′′2
1

|k′′ − k′|
. (41)

We can explicitly verify that Eq. (41) is the Fourier transform of Eq. (24).

Using the fact that − 1
4π

1
|k−k′| is the Green’s function for the Laplacian in three dimensions, we

can also write:

9
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∑
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Here γ1 := k̂ · k̂′′, and γ2 := k̂′′ · k̂′.

Recollecting the results, we have:

〈zδ(k), zδ(k′)∗〉 = (Pδδ(k) + 2Pδθ(k) + Pθθ(k)) δ(k− k
′)

+
1

4π
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+

Pθθ(k)
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)

+

(

Pδθ(k′)

k′2
+

Pθθ(k′)

k′2
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∂
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[

(1− γ2)
∂

∂γ

]

1

|k− k′|

+
1

(4π)2

ˆ

d2k̂′′ ∂

∂γ1

[
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∂
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]

∂
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]

×
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1
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1
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We can explicitly verify that Eq. (41) is the Fourier transform of Eq. (24).

Using the fact that − 1
4π

1
|k−k′| is the Green’s function for the Laplacian in three dimensions, we

can also write:

or, in Fourier space, we obtain:

As final result,  the two point correlation function can be written as:


