Redshift-space distortions: two-point correlation function in wide-angle regime

Paulo Reimberg, Universidade de São Paulo/CEA-Saclay
in collaboration with F. Bernardeau, C. Pitrou, and R.Abramo

SEVENTH FRAMEWORK
PROGRAMME

From Pápai \& Szapudi (2008):

$$
\begin{aligned}
\xi_{s}\left(\phi_{1}, \phi_{2}, r\right)= & \sum_{n_{1}, n_{2}=0,1,2} a_{n_{1} n_{2}} \cos \left(n_{1} \phi_{1}\right) \cos \left(n_{2} \phi_{2}\right) \\
& +b_{n_{1} n_{2}} \sin \left(n_{1} \phi_{1}\right) \sin \left(n_{2} \phi_{2}\right)
\end{aligned}
$$

Again, for reference, the previously calculated coefficients are

$$
a_{00}=\left(1+\frac{2 f}{3}+\frac{2 f^{2}}{15}\right) \xi_{0}^{2}(r)
$$

$$
-\left(\frac{f}{3}+\frac{2 f^{2}}{21}\right) \xi_{2}^{2}(r)+\frac{3 f^{2}}{140} \xi_{4}^{2}(r)
$$

$$
a_{02}=a_{20}=\left(\frac{-f}{2}-\frac{3 f^{2}}{14}\right) \xi_{2}^{2}(r)+\frac{f^{2}}{28} \xi_{4}^{2}(r)
$$

$$
a_{22}=\frac{f^{2}}{15} \xi_{0}^{2}(r)-\frac{f^{2}}{21} \xi_{2}^{2}(r)+\frac{19 f^{2}}{140} \xi_{4}^{2}(r)
$$

$$
b_{22}=\frac{f^{2}}{15} \xi_{0}^{2}(r)-\frac{f^{2}}{21} \xi_{2}^{2}(r)-\frac{4 f^{2}}{35} \xi_{4}^{2}(r)
$$

and the new expressions of this work correspond to

$$
\begin{aligned}
& a_{10}=\frac{\tilde{a}_{10}}{g_{1}}=\left(2 f+\frac{4 f^{2}}{5}\right) \frac{1}{g_{1} r} \xi_{1}^{1}-\frac{1}{5} \frac{f^{2}}{g_{1} r} \xi_{3}^{1}, \\
& a_{01}=\frac{\tilde{a}_{01}}{g_{2}}=-\left(2 f+\frac{4 f^{2}}{5}\right) \frac{1}{g_{2} r} \xi_{1}^{1}+\frac{1}{5} \frac{f^{2}}{g_{2} r} \xi_{3}^{1}, \\
& a_{11}=\frac{\tilde{a}_{11}}{g_{1} g_{2}}=\frac{4}{3} \frac{f^{2}}{g_{1} g_{2} r^{2}} \xi_{0}^{0}-\frac{8}{3} \frac{f^{2}}{g_{1} g_{2} r^{2}} \xi_{2}^{0}, \\
& a_{21}=\frac{\tilde{a}_{21}}{g_{2}}=-\frac{2}{5} \frac{f^{2}}{g_{2} r} \xi_{1}^{1}+\frac{3}{5} \frac{f^{2}}{g_{2} r} \xi_{3}^{1}, \\
& a_{12}=\frac{\tilde{a}_{12}}{g_{1}}=\frac{2}{5} \frac{f^{2}}{g_{1} r} \xi_{1}^{1}-\frac{3}{5} \frac{f^{2}}{g_{1} r} \xi_{3}^{1}, \\
& b_{11}=\frac{\tilde{b}_{11}}{g_{1} g_{2}}=\frac{4}{3} \frac{f^{2}}{g_{1} g_{2} r^{2}} \xi_{0}^{0}+\frac{4}{3} \frac{f^{2}}{g_{1} g_{2} r^{2}} \xi_{2}^{0}, \\
& b_{21}=\frac{\tilde{b}_{21}}{g_{2}}=-\frac{2}{5} \frac{f^{2}}{g_{2} r} \xi_{1}^{1}-\frac{2}{5} \frac{f^{2}}{g_{2} r} \xi_{3}^{1}, \\
& b_{12}=\frac{\tilde{b}_{12}}{g_{1}}=\frac{2}{5} \frac{f^{2}}{g_{1} r} \xi_{1}^{1}+\frac{2}{5} \frac{f^{2}}{g_{1} r} \xi_{3}^{1} .
\end{aligned}
$$

where

$$
\xi_{l}^{m}(r)=\int \mathrm{d} k / 2 \pi^{2} k^{m} j_{l}(r k) P(k)
$$

$g_{1} r=\frac{\sin \left(\phi_{2}\right)}{\sin \left(\phi_{2}-\phi_{1}\right)} r \quad g_{2} r=\frac{\sin \left(\phi_{1}\right)}{\sin \left(\phi_{2}-\phi_{1}\right)} r$

(+ one term geometrically suppressed term multiplying $\int d k k^{2} \frac{j_{0}(k r)}{(k r)^{2}} P_{\theta \theta}(k)$)

Schematic calculation:

The two point correlation function in redshift space is given by:

$$
{ }^{z} \xi\left(\mathbf{x}, \mathbf{x}^{\prime}\right):=\left\langle^{z} \delta(\mathbf{x})^{z} \delta\left(\mathbf{x}^{\prime}\right)^{*}\right\rangle
$$

where, the spherically decomposed density field is:

$$
{ }^{z} \delta(\mathbf{x})=\sum_{l, m}(-i)^{l} \sqrt{\frac{2}{\pi}} \int d k k^{2} j_{l}(k x)^{z} \delta_{l m}(k) \mathrm{Y}_{l m}(\hat{\mathbf{x}})
$$

assuming that peculiar velocities are small, first order perturbation theory allow us to write:

$$
{ }^{z} \delta_{l m}(k)=\delta_{l m}(k)+\int d k^{\prime} N_{l}\left(k, k^{\prime}\right) \theta_{l m}\left(k^{\prime}\right)
$$

with the kernel

$$
N_{l}\left(k, k^{\prime}\right)=\frac{2}{\pi} \int d r r^{2} j_{l}^{\prime}\left(k^{\prime} r\right) j_{l}^{\prime}(k r) k k^{\prime}=\delta\left(k-k^{\prime}\right)-\frac{l(l+1)}{(2 l+1)} \frac{k_{<}^{l}}{k_{>}^{l+1}}
$$

As final result, the two point correlation function can be written as:

$$
\begin{aligned}
{ }^{z} \xi\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\frac{1}{2 \pi^{2}} \int d k k^{2} j_{0}(k r)\left(P_{\delta \delta}(k)+2 P_{\delta \theta}(k)+P_{\theta \theta}(k)\right) \\
& +\frac{1}{2 \pi^{2}} \frac{d}{d \nu}\left[\left(1-\nu^{2}\right) \frac{d}{d \nu}\right] \int d k j_{0}(k r)\left(P_{\delta \theta}(k)+P_{\theta \theta}(k)\right)\left(\frac{1}{x^{2}}+\frac{1}{x^{\prime 2}}\right) \\
& +\frac{1}{2 \pi^{2}}\left[\frac{d}{d \nu}\left(\left(1-\nu^{2}\right) \frac{d}{d \nu}\right)\right]^{2} \int d k j_{0}(k r) \frac{P_{\theta \theta}(k)}{k^{2}} \frac{1}{x^{2} x^{\prime 2}}
\end{aligned}
$$

or, in Fourier space, we obtain:

$$
\begin{aligned}
\left\langle^{z} \delta(\mathbf{k}),^{z} \delta\left(\mathbf{k}^{\prime}\right)^{*}\right\rangle= & \left(P_{\delta \delta}(k)+2 P_{\delta \theta}(k)+P_{\theta \theta}(k)\right) \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \\
& +\frac{1}{4 \pi}\left[\left(\frac{P_{\delta \theta}(k)}{k^{2}}+\frac{P_{\theta \theta}(k)}{k^{2}}\right)+\left(\frac{P_{\delta \theta}\left(k^{\prime}\right)}{k^{\prime 2}}+\frac{P_{\theta \theta}\left(k^{\prime}\right)}{k^{\prime 2}}\right)\right] \frac{\partial}{\partial \gamma}\left[\left(1-\gamma^{2}\right) \frac{\partial}{\partial \gamma}\right] \frac{1}{\left|\mathbf{k}-\mathbf{k}^{\prime}\right|} \\
& +\frac{1}{(4 \pi)^{2}} \int d^{2} \hat{\mathbf{k}}^{\prime \prime} \frac{\partial}{\partial \gamma_{1}}\left[\left(1-\gamma_{1}^{2}\right) \frac{\partial}{\partial \gamma_{1}}\right] \frac{\partial}{\partial \gamma_{2}}\left[\left(1-\gamma_{2}^{2}\right) \frac{\partial}{\partial \gamma_{2}}\right] \\
& \times \int d k^{\prime \prime} \frac{1}{\left|\mathbf{k}-\mathbf{k}^{\prime \prime}\right|} \frac{P_{\theta \theta}\left(k^{\prime \prime}\right)}{k^{\prime \prime 2}} \frac{1}{\left|\mathbf{k}^{\prime \prime}-\mathbf{k}^{\prime}\right|}
\end{aligned}
$$

