

#### The 2nd Azores School on Observational Cosmology

# Cosmological constraints on the Higgs portal

#### Tommi Tenkanen

In collaboration with K. Enqvist, S. Nurmi and K. Tuominen Helsinki Institute of Physics and Department of Physics University of Helsinki tommi.tenkanen@helsinki.fi

### Initial conditions set by inflation

 During inflation, the scalar sector of the model is specified by the potential

$$V(h,s)=rac{\lambda_h}{4}h^4+rac{\lambda_s}{4}s^4+rac{\lambda_{sh}}{2}h^2s^2$$

- No non-minimal coupling to gravity (No higgs inflation<sup>1</sup>, assume stability of the higgs potential<sup>2</sup>)
- Typical magnitudes of the scalar condensates generated during inflation are

$$h_* = \mathcal{O}(0.1) \frac{H}{\lambda_h^{1/4}}, \qquad s_* = \mathcal{O}(0.1) \frac{H}{\lambda_s^{1/4}}$$

Bezrukov & Shaposhnikov (1403.6078)

<sup>2</sup>Fairbairn & Hogan (1403.6786), Enqvist et al. (1404.3699)



### Condensates acquire a large thermal mass

- ► Assume inflaton decaying into SM particles and instantly reheating the Universe  $\Rightarrow T^4 \simeq M_P^2 H_*^2$
- This causes all fields *i* coupled to thermal bath to acquire a large effective thermal mass,

$$m_i^2(T) = m_i^2(0) + c_i T^2$$

For example, the Higgs condensate mass satisfies

$$rac{m_h^2(T)}{m_h^2(0)}\simeq rac{c_hT^2}{3\lambda_h\langle h^2
angle}\simeq rac{M_P}{H_*}$$



# No effective decay channels open

The scalar background equation of motion is given by

$$\ddot{h} + 3H(t)\dot{h} + c_h T^2 h = 0$$

- Reveals that the envelope scales as h(t) ∝ T ∝ a<sup>-1</sup>
   ⇒ resonances very narrow ⇒ no non-perturbative decay
- Thermal bath changes the dispersion relations and thus the condition for condensates' perturbative decay. No effective channels are found to be open.



# Going to two loops

- At two-loop and higher level there are no energy thresholds and the decay of a scalar condensate can take place.
- The magnitude of the two-loop processes can be estimated by calculating the "rising-sun" diagrams, which give<sup>3</sup>

$$\Gamma_h = \frac{3}{256\pi} \frac{g^4}{m_h(T)} T^2$$

Why is this important? In order to have a strong EWPT one needs the two fields to relax on ⟨s⟩ = w<sub>c</sub>, ⟨h⟩ = 0.



<sup>&</sup>lt;sup>3</sup>Elmfors et al. (9307210)

# What about perturbations?

- Inflaton couples to SM ⇒ Higgs condensate has no time to grow its energy density w.r.t. inflaton decay products ⇒ no effect on large-scale perturbations<sup>4</sup>
- Also unlikely for the singlet
- But: Maybe the singlet can act as a DM particle...
- Coming soon to the arXiv near you: "Standard Model with a real singlet scalar and Inflation"

As in curvaton-type models. See e.g. Lyth & Liddle (0110002)

