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1. Internal Structure
a. Introduction
b. How to characterize the internal strcuture of starless cores
c. L1498 & L1517B: two intermediate-stage cores

2. Evolution of cores
a. How can we trace core evolution?
b. Searching for young cores




Why do we study dense starless cores?

Taurus-like cores do not

— form high or intermediate-mass stars

— form clusters

— represent dominant mode of star formation

Taurus-like cores do
— represent the simplest sites where Sun-like stars are born

— constitute the most nearby star-forming regions
— form “"complete” systems: disks, outflows, binaries

Hope: star formation in a core contains most of the basic
physics of star formation

From cores to clusters (of 1 star/binary)
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Global core properties
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* Global properties well known since late eighties

* Determined from

— low resolution observations (> arcminute)

— single line tracer (NH,)

— observation of a large number of objects (>100)
» Global properties are averages

— but cores are not homogeneous
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Problems already: something missing...
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2004: 15 years later

* Increase in resolution (< 1arcmin): IRAM 30m, JCMT

* mm/sub-mm dust continuum (SCUBA, MAMBO)
— Ward-Thompson et al. (1994), André et al. (1996)

* NIR extinction measurements
— Lada et al. (1994), Alves et al. (2001)
* Mid-IR absorption images
— Bacmann et al. (2000)
* Identification of depletion/freeze out as a key element
in dense core chemistry
— Kuiper et al. (1996), Kramer et al. (1999), Caselli et al. (1999)

It has become finally possible to model
consistently the interior of dense cores
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Deriving core internal structure

« Parameters: n(r), T(r), sigma_v(r), v(r), X,(r), (B?)
« Assumption of spherical symmetry
— observed deviations: oblate-prolate?

* Radiative transfer. Dust
— optically thin at mm/submm
— factor of 2 uncertainty in emissivity a mm/sub-mm wavelength
— uncertain dust temperature profiles (see Malcolm’s talk)

* Radiative transfer. Lines
—no LTE (n<n_))
—no LVG (sigma_v is small)
— Monte Carlo (e.g., Tafalla et al. 2002), ALI (Keto et al. 2004)
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The internal structure of L1498 & L1517B
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 Two Taurus/Auriga cores
— no evidence for star formation (2MASS, IRAS)

— close to round shape
* Probably at intermediate stage in evolution (see later)

- Tafalla, Myers, Caselli, Walmsley (2004) + in prep.
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Molecular data for L1498
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Core density profiles
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* Isothermal (Bonnor-Ebert)
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Core temperature

A AL I * (1,1)-(2,2) analysis for
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» Excellent fit with
constant temperature

—close to 10 K
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» Possible central gas temperature drop?

— dust temp. expected to drop at center (bc UV attenuation)
— dust/gas thermal coupling at densities 10° cm-3

« Compare with models by Galli et al. (2002)
— drop seems less than 1 K (3K increase doubles (2,2) emission)
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Linewidth: thermal and non thermal
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» Hyperfine analysis corrects for optical depth

 Radial profile of NH; intrinsic linewidth
— constant, very low scatter (consistent w. noise). No linewidth-size relation
— non thermal component FWHM < 0.1 km/s (sigmay; = 0.04 km/s)

P " Pressure support by turbulent
NT _ _9NT _ no05 | — component is negligible in
br (m central 0.1 pc
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Equilibrium state of L1498 and L1517B

» Cores seem isothermal (T=10K)

* Linewidth is constant
— non-thermal contribution to pressure is negligible (5% of thermal)

* Density profiles are very close to Bonnor-Ebert profiles

Are L1498 and L1517B in equilibrium?

« Compare measured velocity dispersion (0.185 km/s) with predicted
by BE fit
— L1498: 0.32 km/s
— L1517B: 0.27 km/s

» Caveat: BE-fit dispersion depends on assumed emissivity
— if kappa is twice assumed, L1517B is in equilibrium

« Magnetic field? _ _
_ 81498 not spherical Unclear: study kinematics...
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Velocity structure
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Molecular composition. L1498.
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Molecular radial profiles
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Monte Carlo models for L1498

NO/INNER DEPLETION

OUTER DEPLETION

MOLECULE X, Rpole (cm) MOLECULE X Rpole (cm)
NH; 1.4 x 10°° — 0-C3H, 1.2 x 1079 1.1 x 1017
N,H* L7 16-10 B HCO* 3.0 x 100 | 1.15 x 1017
DCO*+ 5.0 x 10°11 | 0.65 x 1017 CHOH 3.0 x 10710 | 1.2 x 1017
HCN 0.0 x 100 | o8 x 1017 o-H,CO 4.0 x 10710 | 1.25 x 1017
HC,N 50 x 10-10 | o.8 x 1017 CCS 4.0 x 10710 | 1.25 x 1017
CSs 3.0 x 1002 | 1.0 x 1017 SO 1.4 x 1009 | 1.5 x 1017

C0 0.5 x 1077 1.5 x 1017

» Step models: constant abundance X, + central hole R
 Size of central hole varies with molecule

— differentiated (onion-like) abundance pattern

— most tracers insensitive to inner gas (r<5,000 AU=0.75 1077cm)
» Central abundance drops explained by molecular freeze out

— N-bearing species favored at center due to low binding energy of
N, (Bergin & Langer 1997, Aikawa et al. 2003)

» Central NH; enhancement not well understood

hole
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NH,-CS discrepancy explained
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* Our models reproduce NH,-CS discrepancy

— they contain key ingredients to explain it
» 2x larger CS maps (+ different peak position): depletion effect

— absence of CS at core center truncates map and increases HM radius
« 2x wider CS lines: optical depth effect

— CS lines systematically self absorbed
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Depletion, tracer of core contraction?

» Superposed to order-of-magnitude radial abundance drops in
CO and CS, factor-of-two azimuthal variations

A (arcsec)
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Depletion, tracer of core contraction?
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* Regions with higher CO and CS abundance

— probably less depletion
— probably less time at high densities: younger

* Younger regions correlated with “high velocity” N,H* (also NH,)
* If contraction: no spherical symmetry (Myr time scale)
- Effect observed in L1498 & L1517B. We still need more cases
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Tracing core evolution using depletion

 We don’t understand all the details of core chemistry, but some
basic processes are clear

» As a core contracts, freeze out increases with time
* If a core stays cold and dense
— freeze out is irreversible and progressive
— it can be used as a clock to time contraction
» “Depletion for dummies:”
— young core, little CO depletion
— old core, strong CO depletion
* Define depletion indicator comparing CO and N,H* emission

R = ][Claﬂ(l—o)]ﬂ[naﬂ"( 1-0)] (measured at core center)

* Young core: little CO depletion, high R
» Old core: strong CO depletion, low R
* Behavior is reinforced because N,H" is a late-time molecule
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Tracing core evolution with CO depletion

R = 1[C'®0(1-0)]1/1[NH*(1-0)]
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» 21 cores fully mapped in C'80(1-0) and N,H*(1-0) with FCRAO

* R =1 boundary CO depletion/no depletion
— Monte Carlo radiative transfer models

* Non trivial search for cores with R > 1
— standard “Benson & Myers” cores have R<1 (NH,-bright selected)
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L1521E: the youngest core?
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» Radiative transfer (Monte Carlo)
— consistent with no CO depletion
— N,H* abundance is 8 times lower than in L1498 & L1517B

« Chemical composition suggestive of extreme youth
—<150,000 yr (crude depletion time scale)

» But central density similar to L1517B & L1498 (3 10° cm?3)

» Fast contraction? We need more examples
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Summary

* Combination of new techniques and higher angular resolution over the
last 15 years

— has allowed true mapping of dense core material (dust)

— has shown that chemical differentiation is a major factor
 Detailed radiative transfer modeling of cores now

— can explain old discrepancies between tracers

— reveal a more clear picture of core internal structure
* From L1498 and L1517B analysis

— quasi Bonnor-Ebert density distributions

— spatially constant temperature and turbulence

— onion shell molecular composition

— possible residual motions from asymmetric core contraction
- Extending analysis to other cores

— we can search for cores of different age

— attempt to reconstruct history of core contraction

* We can look forward to another exciting 15 years of core research
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