Dissecting iDR2 disk data by GMM cluster models

Álvaro Rojas-Arriagada

Gaia-ESO Survey Second Science Meeting Porto, 2014

Bensby et al. 2005

Distribution of physical parameters overlaps in this thin/thick disc defined samples

Good quality data \rightarrow follow number density gap in the $[\alpha/Fe]$ vs. [Fe/H] plane

Recio-Blanco et al. 2014

We propose a different approach to split data in the abundance-metallicity plane

Clustering formalism

To find substructure supported by data

Mathematically rigorous procedure

GMM in 2D (Gaussian Mixture Models)

GMM defined as a weighted sum of bivariate normal distributions

$$M(z|\mu,\Sigma) = \sum_{i=1}^k w_i N(z|\mu_i,\Sigma_i)$$

- $\star\,$ With means μ and covariance matrix Σ
- * Mixture with specific set of parameters μ_i , σ_i is an attempt to fit data set z composed by N observations

Given a GMM \rightarrow best set of parameters \rightarrow maximum likelihood

$$L(z|\mu, \Sigma) = \prod_{j=1}^{N} M(z_j|\mu, \Sigma).$$
 EM algorithm

Given several maximum likelihood GMM models \rightarrow complexity supported by data \rightarrow AIC

Best generating model

 $AIC = 2N_p - 2\ln(L_{max})$

GMM in 2D

Given several maximum likelihood GMM models \rightarrow complexity supported by data the "best" one??

Best generating mode

 $AIC = 2N_p - 2\ln(L_{max})$

GMM in 2D

Application to disc GES iDR2 data

Stellar parameters, metallicity and abundances derived from H10 + HR21setups \rightarrow clean sample of 1375 stars

Best GMM model solution

- 5 components
- Thin/thick separation in good agreement with "follow-gap" procedure

Best GMM model solution

- 5 components
- Thin/thick separation in good agreement with "follow-gap" procedure

Best GMM model solution

- 5 components
- Thin/thick separation in good agreement with "follow-gap" procedure

Statistically significant difference in slope for red and blue groups No significant slope difference for blue and green groups

Results for different stellar types

- Gap thick-disc/hαmr stars more pronounced in RC
- Thin-disc overdensity at [Fe/H]~0.1 dex due to dwarfs
- Sequences in RC sample less dispersed than in dwarfs

Results for different stellar types

Group slopes with homogeneous trends in the three samples

Red group

- Different trend for RC and dwarf sample
- RC red group split because subdensity
- No T_{eff} correlation with [Fe/H] to explain discrepancy

The metal-poor thin disk "green group"

No statistically significant slope difference respect to "blue" group

Intermediate scale height

Low radial cylindrical velocity dispersion

Radial migration?? Formation in-situ??

Summary

We propose a clustering approach to examine data structure

Metallicity-abundance plane

Chemical tagging

Data structure Gaussian formalism

We found five mean components:

- Halo
- Thick disc
- Thin disc in three components

Changes in slope + local number overdensities

Metal-rich "red" thin disc group: Different slope for dwarf and RC stars

Metal-poor end "green" thin disc group: Some characteristics different respect to more metal-rich thin disc stars

