

Membership analysis in the Gamma Velorum cluster

L. Prisinzano, F. Damiani, G. Micela, (INAF-Osservatorio Astronomico di Palermo) R. Jeffries and the GES Consortium

The Gamma Vel cluster

- Age: 5-10 Myr
 no evidence of ongoing star formation
- Distance: 356±11 pc
 quite sparse on the sky

Ideal cluster for stellar evolution and dynamical studies!

1242 Giraffe targets Many targets outside the cluster region!

GES OBSERVATION STRATEGY

Cluster within a 1 deg x 1 deg field of view \rightarrow 9+9 FLAMES pointings were required.

Many spare fibres were used to allocate objects around the CMD cluster locus... a large number of contaminants are expected

Context

- The cluster is embedded within the Vela OB2 Association
- The RV cluster distribution suggests the presence of two kinematically distinct BUT SIMILAR populations, A & B

(Jeffries et al 2014)

 Pop. A & B are also of similar age

Cluster membership definition

- Radial velocity analysis is the only kinematic membership criterion
- Lithium, Halpha, X-rays are indicators of youth

Pop. A and B are similar in their motion and in age -> available membership criteria do not allow us to distinguish them

In this work "cluster members" belong to either Pop. A & B

EXAMPLE:

Adopted cluster membership criteria

- PHOTOMETRIC CRITERIA:
- Color-magnitude diagram position (P)
- X-ray detection (X)
- SPECTROSCOPIC CRITERIA:
- Radial velocity (R)
- EW(Li) (L)
- Hα core index (A) (Damiani et al. 2014)
- Y gravity index (G) (Damiani et al. 2014)

Adopted cluster membership criteria

- PHOTOMETRIC CRITERIA:
- Color-magnitude diagram position (P)
- X-ray detection (X)
- SPECTROSCOPIC CRITERIA:
- Radial velocity (R)

Necessary condition

- EW(Li) (L)
- Hα core index (A) (Damiani et al. 2014)
- (r gravity index (G) (Damiani et al. 2014)

PHOTOMETRIC CANDIDATES

X-RAY CANDIDATES

We used the entire data set (1202 targets with S/N>5)

Three gaussian component model with RV mean and RMS for pop. A & B from Jeffries et al. 2014

$$F(x) = F_A(x) + F_B(x) + F_F(x) =$$

$$= \frac{f_A}{\sigma_A \sqrt{2\pi}} e^{-\frac{(x-\mu_A)^2}{2\sigma_A^2}} + \frac{f_B}{\sigma_B \sqrt{2\pi}} e^{-\frac{(x-\mu_B)^2}{2\sigma_B^2}} + \frac{f_F}{\sigma_F \sqrt{2\pi}} e^{-\frac{(x-\mu_F)^2}{2\sigma_F^2}}$$

Probability that the *i*th star belongs to pop. A or B:

 $\mathsf{P}_{\mathsf{AB},i} = (\mathsf{F}_{\mathsf{A},i} + \mathsf{F}_{\mathsf{B},i}) / \mathsf{F}_{i}$

 $F_{A,i}$, $F_{B,i}$ and F_i are computed from the adopted model at the RV of the *i*th star

325 stars (including 87contaminants) with P_{AB}>0.003

 $(3\sigma \text{ from the RV mean: } 12.8 < RV < 24.9 km/s)$

+ 23 SB2 or fast rotators from inspection of the CCF

LITHIUM CANDIDATES

STEP 1

DEFINING LOCUS

Reference sample:

236 photometric & RV candidates (red empty squares)

LITHIUM CANDIDATES: FITTING

STEP 2

- Breakdown in four V-I ranges
- maximum likelihood
 fitting technique -two
 gaussian components
 (L_C and L_{F)}

LITHIUM CANDIDATES: PROBABILITIES

STEP 3

Probability that the *i*th star belongs to the cluster

 $P_{C,i} = L_{C,i} / (L_{C,i} + L_{F,i})$

L_{C,i} and L_{F,i} are computed from the adopted model at the EW(Li) of the *i*th star

LITHIUM CANDIDATES: Li GAP

LITHIUM CANDIDATES: RESULTS

H α CANDIDATES: ACTIVE STARS

- Reference sample: photometric and RV candidate members to trace the locus (red squares)
- define the limit
- SELECTION:

259 candidate active stars (black plus) that include 11 a Accretors previously selected

65 undefined (low S/N)

918 inactive stars

CANDIDATES FOR GRAVITY

ALL CRITERIA

MEMBERSHIP REQUIREMENTS

For each star N is the number of criteria with available membership indication M is the number of criteria for which the membership is positive

```
CONFIRMED MEMBERS: (238)
```

M/N> ¾ and N>2 and Phot-ok OR M/N=3/4 and (ok-RV or ok-Li)

POSSIBLE MEMBERS or YOUNG STARS: (44)

1/2<M/N<3/4 OR M/N=3/4 and no-RV and no-Li OR M=2 and N=2

NON MEMBERS: (960) M/N≤0.5

MEMBERSHIP EFFICIENCY in the XMM FOV

Method	#members	#info	Fraction 1	Fraction 2				
all V-I range Tot. 103								
G	70	70	1.00	0.68				
P	103	103	1.00	1.00				
R	98	99	0.99	0.95				
L	92	95	0.97	0.89				
A	96	96	1.00	0.93				
X	95	103	0.92	0.92				
0.3 <v-i< 1.1="" 4<="" td="" tot.=""></v-i<>								
G	2	2	1.00	0.50				
P	4	4	1.00	1.00				
R	3	3	1.00	0.75				
L	4	4	1.00	1.00				
A	4	4	1.00	1.00				
X	4	4	1.00	1.00				
1.1 <v-i< 2.4="" 34<="" td="" tot.=""></v-i<>								
G	28	28	1.00	0.82				
P	34	34	1.00	1.00				
R	33	33	1.00	0.97				
L	34	34	1.00	1.00				
A	34	34	1.00	1.00				
X	33	34	0.97	0.97				
2.4 <v-i< 4.1="" 65<="" td="" tot.=""></v-i<>								
G	40	40	1.00	0.62				
P	65	65	1.00	1.00				
R	62	63	0.98	0.95				
L	54	57	0.95	0.83				
A	58	58	1.00	0.89				
X	58	65	0.89	0.89				

ONLY CONFIRMED MEMBERS

FILLED: confirmed by the specific method EMPTY: missed by the specific method

MEMBERSHIP EFFICIENCY in the XMM FOV

Method	#members	#info	Fraction 1	Fraction 2			
all V-I range Tot. 103							
G	70	70	1.00	0.68			
P	103	103	1.00	1.00			
R	98	99	0.99	0.95			
L	92	95	0.97	0.89			
A	96	96	1.00	0.93			
X	95	103	0.92	0.92			
0.3 <v-i< 1.1="" 4<="" td="" tot.=""></v-i<>							
G	2	2	1.00	0.50			
P	4	4	1.00	1.00			
R	3	3	1.00	0.75			
L	4	4	1.00	1.00			
A	4	4	1.00	1.00			
X	4	4	1.00	1.00			
1.1 <v-i< 2.4="" 34<="" td="" tot.=""></v-i<>							
G	28	28	1.00	0.82			
P	34	34	1.00	1.00			
R	33	33	1.00	0.97			
L	34	34	1.00	1.00			
A	34	34	1.00	1.00			
X	33	34	0.97	0.97			
2.4 <v-i< 4.1="" 65<="" td="" tot.=""></v-i<>							
G	40	40	1.00	0.62			
P	65	65	1.00	1.00			
R	62	63	0.98	0.95			
L	54	57	0.95	0.83			
A	58	58	1.00	0.89			
Х	58	65	0.89	0.89			

ONLY CONFIRMED MEMBERS

FILLED: confirmed by the specific method EMPTY: missed by the specific method

MEMBERSHIP EFFICIENCY outside XMM FOV

Method	#members	#info	Fraction 1	Fraction 2
	all V-I range	e Tot. 13:	5	
G	93	93	1.00	0.69
Р	135	135	1.00	1.00
R	132	135	0.98	0.98
L	113	119	0.95	0.84
Α	122	123	0.99	0.90
	0.3 <v-i<1< td=""><td>.1 Tot. 4</td><td></td><td></td></v-i<1<>	.1 Tot. 4		
G	2	2	1.00	0.50
Р	4	4	1.00	1.00
R	4	4	1.00	1.00
L	3	3	1.00	0.75
Α	3	4	0.75	0.75
	1.1 <v-i<2< td=""><td>.4 Tot. 39</td><td>)</td><td></td></v-i<2<>	.4 Tot. 39)	
G	28	28	1.00	0.72
Р	39	39	1.00	1.00
R	37	39	0.95	0.95
L	35	38	0.92	0.90
A	39	39	1.00	1.00
	2.4 <v-i<5< td=""><td>.0 Tot. 92</td><td>2</td><td></td></v-i<5<>	.0 Tot. 92	2	
G	63	63	1.00	0.68
P	92	92	1.00	1.00
R	91	92	0.99	0.99
L	75	78	0.96	0.82
Α	80	80	1.00	0.87

ONLY CONFIRMED MEMBERS

FILLED: confirmed by the specific method EMPTY: missed by the specific method

MEMBERSHIP EFFICIENCY: CONCLUSIONS

All members are above the threshold fixed for the method

WITH THE GES DATA OF GAMMA VEL CLUSTER:

- The most helpful method is based on RV (97%, 8 lost) regardless of spectral type
- $\hfill\blacksquare$ The method based on the gravity and on the H α can be applied only on the subsample of spectra with high S/N
- The Li method limit is due to the physics of the mechanism
- The Hα and gravity methods are very efficient for mid and late type stars
- The X-ray method is limited for the M-type stars because they are less bright in X-rays

INITIAL MASS FUNCTION (preliminary results)

CMD: comparison with models

MASS ESTIMATES

ERRORS on the MASSES

assuming the errors on

- distance modulus:7.76±0.07 (Jeffries et al. 2009)
- E(V-I)=0.131±0.084 (Jeffries et al. 2009 Damiani et al. 2014)

MASS BINS ~ MASS ERRORS

PRELIMINARY IMF

PRELIMINARY IMF

X-ray UNOBSERVED WITH GES

