

What does *M/L_V* of globular clusters tell us about the IMF?

Mark Gieles

Rosemary Shanahan (Edinburgh) Vincent Hénault-Brunet, Alice Zocchi, Miklos Peuten (Surrey) Anna Lisa Varri (Edinburgh)

Motivation: IMF variations in early type galaxies?

Kinematics

Direct detection lowmass stars

1 virial equilibrium $2T + W = 0 \implies M = 2 \frac{\langle v^2 \rangle r_v}{G}$

4 measure L_V and compare M/L_V to SSP model

Transition between GCs and ultra-compact dwarf galaxies

Mieske et al. 2008

Reduced *M/L_V* of GCs: depletion of low-mass stars?

Low-mass star depletion?

200 GCs in M31

Low-mass star depletion?

Low-mass star depletion?

[Fe/H] dependent IMF?

[Fe/H] dependent IMF?

GCs are collisional systems which leads to biases!

M/*L*_V of GCs: an "easy" probe of the IMF?

observable quantities
$$M = 2 \frac{\eta}{\eta_r \eta_v} \frac{\langle v_{\rm p}^2 \rangle_L r_{\rm hp,L}}{G}$$

$$\eta = rac{\langle v^2
angle}{\langle v_{
m p}^2
angle} rac{r_{
m h}}{r_{
m hp}} rac{r_{
m v}}{r_{
m h}} \quad {
m model \ dependent}$$

observable quantities
$$M = 2 \frac{\eta}{\eta_r \eta_v} \frac{\langle v_{\rm p}^2 \rangle_L r_{\rm hp,L}}{G}$$

$$\eta = \frac{\langle v^2 \rangle}{\langle v_p^2 \rangle} \frac{r_h}{r_{hp}} \frac{r_v}{r_h} \mod dependent$$
$$\eta_r = \frac{r_{hp,L}}{r_{hp}} \qquad <1$$

observable quantities
$$M = 2 \frac{\eta}{\eta_r \eta_v} \frac{\langle v_{\rm p}^2 \rangle_L r_{\rm hp,L}}{G}$$

$$\eta = \frac{\langle v^2 \rangle}{\langle v_p^2 \rangle} \frac{r_h}{r_{hp}} \frac{r_v}{r_h} \mod dependent$$
$$\eta_r = \frac{r_{hp,L}}{r_{hp}} \qquad <1$$
$$\eta_v = \frac{\langle v_p^2 \rangle_L}{\langle v_p^2 \rangle} \qquad <1$$

(Anisotropic) Lowered Isothermal Model Exploration in Python

Isotropic:
$$f_n(\hat{E}) = \begin{cases} A \exp(-\hat{E}), & n = 1\\ A \left[\exp(-\hat{E}) - \sum_{m=0}^{n-2} \frac{1}{!m} \left(-\hat{E}\right)^m \right], & n > 1 \end{cases} \qquad \hat{E} = \frac{E - \phi(r_t)}{\sigma^2}$$

(Anisotropic) Lowered Isothermal Model Exploration in Python

Isotropic:
$$f_n(\hat{E}) = \begin{cases} A \exp(-\hat{E}), & n = 1\\ A \left[\exp(-\hat{E}) - \sum_{m=0}^{n-2} \frac{1}{!m} \left(-\hat{E}\right)^m \right], & n > 1 \end{cases} \qquad \hat{E} = \frac{E - \phi(r_t)}{\sigma^2}$$

n=1 \rightarrow Woolley 1954; n=2 \rightarrow King 1966; n=3 \rightarrow Wilson 1975

Davoust 1977

(Anisotropic) Lowered Isothermal Model Exploration in Python

Isotropic:
$$f_n(\hat{E}) = \begin{cases} A \exp(-\hat{E}), & n = 1\\ A \left[\exp(-\hat{E}) - \sum_{m=0}^{n-2} \frac{1}{!m} \left(-\hat{E}\right)^m \right], & n > 1 \end{cases} \qquad \hat{E} = \frac{E - \phi(r_t)}{\sigma^2}$$

n=1 \rightarrow Woolley 1954; n=2 \rightarrow King 1966; n=3 \rightarrow Wilson 1975

"Michie" anisotropy:
$$f_n(\hat{E}, \hat{J}^2) = \exp\left(-\hat{J}^2\right) f_n(\hat{E})$$
 $\hat{J}^2 = \frac{J^2}{2r_a^2\sigma^2}$

Davoust 1977

http://astrowiki.ph.surrey.ac.uk/dokuwiki

Zocchi et al. in prep

Multi-mass limepy

Include mass dependence in *f* in a self-consistent way Da Costa & Freeman 1976; Gunn & Griffin 1979

Multi-mass limepy

Include mass dependence in *f* in a self-consistent way Da Costa & Freeman 1976; Gunn & Griffin 1979

Sum DFs of mass bins m_j with masses M_j

$$f_j(\hat{E}) = \begin{cases} A_j \exp(-\hat{E}), & n = 1\\ A_j \left[\exp(-\hat{E}) - \sum_{m=0}^{n-2} \frac{1}{!m} \left(-\hat{E}\right)^m \right], & n > 1 \end{cases}$$

Multi-mass limepy

Include mass dependence in *f* in a self-consistent way Da Costa & Freeman 1976; Gunn & Griffin 1979

Sum DFs of mass bins m_j with masses M_j

$$f_j(\hat{E}) = \begin{cases} A_j \exp(-\hat{E}), & n = 1\\ A_j \left[\exp(-\hat{E}) - \sum_{m=0}^{n-2} \frac{1}{!m} \left(-\hat{E}\right)^m \right], & n > 1 \end{cases}$$

$$\hat{E} = \frac{E - \phi(r_{\rm t})}{\sigma_j^2}, \quad \sigma_j^2 = v_0^2 \left(\frac{m_j}{\bar{m}}\right)^{-\beta}, \quad \beta = \begin{cases} 0 & \text{single mass} \\ 1 & \text{equipartition} \end{cases}$$

"Modelling techniques that assume equipartition by construction (e.g. multi-mass Michie-King models) are approximate at best."

Trenti & van der Marel (2013)

"Modelling techniques that assume equipartition by construction (e.g. multi-mass Michie-King models) are approximate at best."

Trenti & van der Marel (2013)

NBODY6 (Aarseth) simulation:

 $N=10^5$, evolved MF, orbit in singular isothermal galaxy, $r_{\text{Jacobi}}/r_{\text{half-mass}} \simeq 10$

NBODY6 (Aarseth) simulation:

 $N=10^5$, evolved MF, orbit in singular isothermal galaxy, $r_{\text{Jacobi}}/r_{\text{half-mass}} \simeq 10$

NBODY6 (Aarseth) simulation:

 $N=10^5$, evolved MF, orbit in singular isothermal galaxy, $r_{\text{Jacobi}}/r_{\text{half-mass}} \simeq 10$

Multi-mass models perfectly describe N-body systems

Evolve IMF for 12 Gyr with SSE, Hurley et al. 2000 Shanaha

Shanahan et al., to be subm.

Evolve IMF for 12 Gyr with SSE, Hurley et al. 2000 Shanaha

Shanahan et al., to be subm.

Shanahan et al, to be submitted

Shanahan et al, to be submitted

Shanahan et al, to be submitted

BH subsystem can survive in GC!

Breen & Heggie 2012

BH subsystem can survive in GC!

BH candidates in M22

Strader et al. 2012

Breen & Heggie 2012

Can we weigh the dark remnants with Gaia-ESO?

[Fe/H]

What does *M/L_V* of globular clusters tell us about the IMF?

- 1. *M/L_V* variations explained by mass segregation, no need for IMF variations
- 2. Potential: derive the present day MF of stars and remnants of clusters

3. Young Massive Clusters

Bastian et al. (2006)

M/*L*_V of GCs: an "easy" probe of the IMF?

MW, LMC, Fornax

M31

1. Which model to choose? Zocchi et al.

A. "efnú" models

Bertin & Trenti 2003

$$f_{\nu}(E, J^2) = A \exp\left[-\frac{E}{\sigma^2} - d\left(\frac{J^2}{|E|^{3/2}}\right)^{\nu/2}\right]$$

4. What next?

Couple multi-mass model to:

(fast cluster) evolution code

Evolution of mass function

Alexander & G 2012; G+ 2013; Alexander+ 2014

Lamers, Baumgardt & G 2013