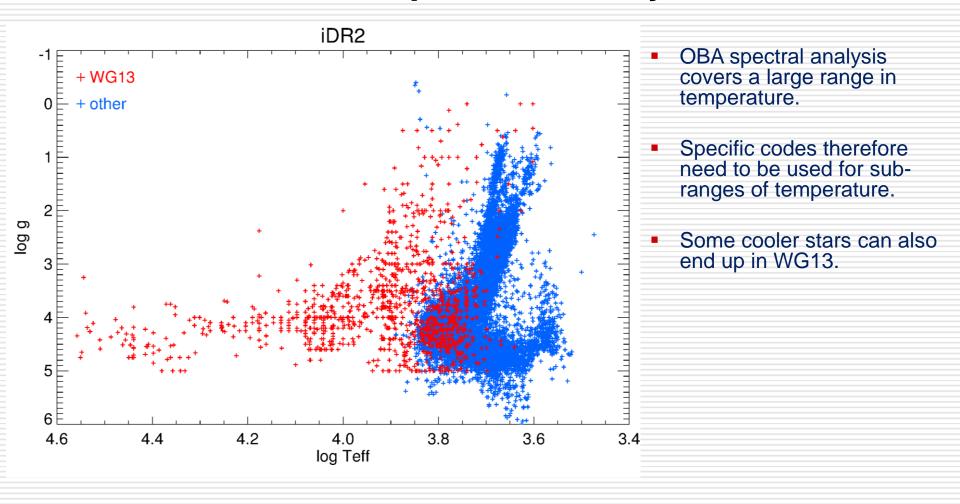
Spectrum Analysis of Hot Stars

R. Blomme Royal Observatory of Belgium

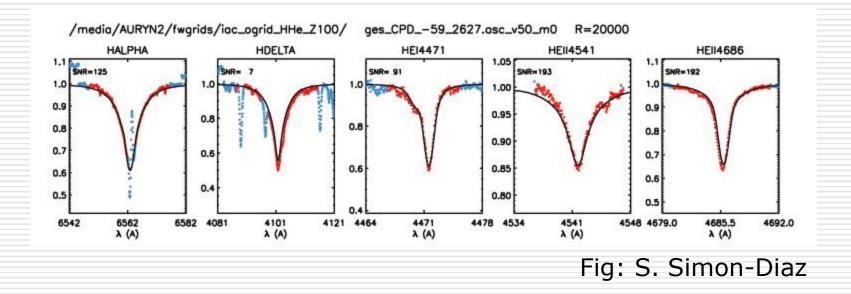

On behalf of:

of: R. Dorda, Y. Frémat, M. Gebran, E. Gosset, A. Herrero, V. Kalari, A. Lobel,
 J. Maíz Apellániz, F. Martins, R. Monier, T. Morel, I. Negueruela, F. Royer,
 T. Semaan, S. Simon-Diaz, A. Tkachenko, D. Volpi,
 and the Gaia-ESO WG13 team

WG 13

WG 13: OBA Star Spectrum Analyses

Workgroup nodes


Workgroup nodes

- ROB (A. Lobel)
 - Models: Kurucz (LTE), refined grid
 - Scanspec: LTE spectrum synthesis
 - Compare EWs of selected lines
 - A-type stars
- Liege (T. Morel, T. Semaan)
 - Models: Kurucz (LTE) or Tlusty (NLTE)
 - Synspec: NLTE spectrum synthesis
 - Compare spectral lines shapes
 - B-type stars

 In the OBA workgroup, each node uses its own techniques to determine stellar parameters and (possibly) abundances

Workgroup nodes

- IAC (A. Herrero, S. Simon-Diaz)
 - FASTWIND models (NLTE)
 - chi2 fitting to spectral line shapes
 - O-type stars

Workgroup nodes

- ROBGrid (R. Blomme, D. Volpi)
 - Models: grids from the literature

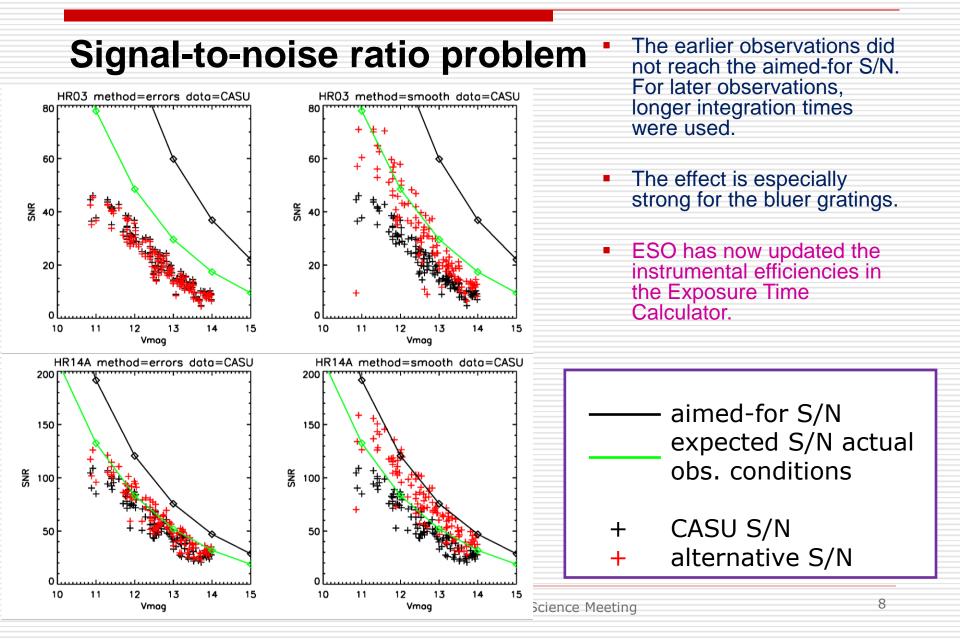
Grid	T _{eff} range			
Bertone et al. 2004	4,000 – 50,000 K			
Munari et al. 2005 – new ODF	3,500 – 9,750 K			
Munari et al. 2005 – old ODF	3,500 – 47,500 K			
Pollux - Atlas	7,000 – 15,000 K			
Tlusty B2006	15,000 – 30,000 K			
Tlusty O2002	27,500 – 55,000 K			

- chi2 fitting full spectral range
- All spectral types

Gratings

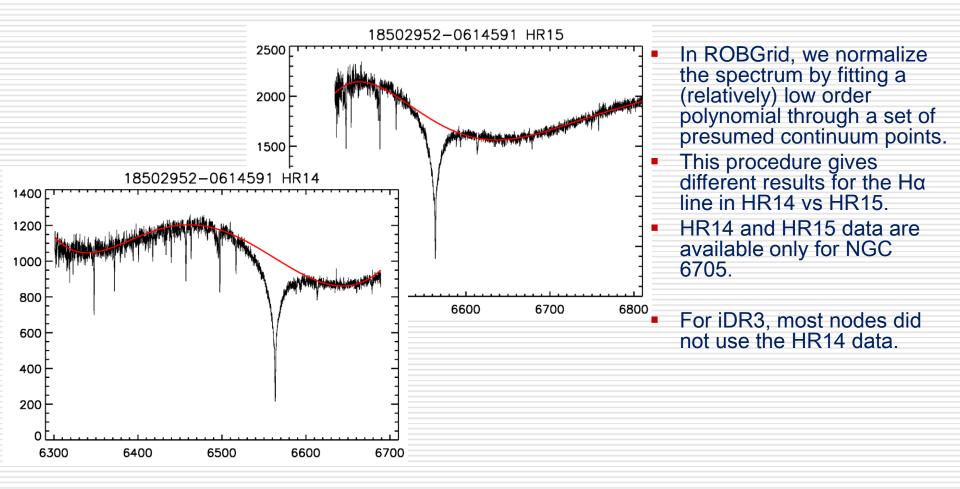
Gratings used

Grating	Wavelength range		
HR03	4033-4201		
HR05A	4340-4587		
HR06	4538-4759		
HR09B	5143-5356		
HR14A	6308-6701		
UVES 520	4140-6210		


- GES uses the FLAMES instrument on UT2, with both the Giraffe and UVES fibres.
- For the hottest stars, specific gratings are used to cover the spectral lines that have the best diagnostic value.
- These gratings are different from the cool-star gratings
- For the UVES fibres, the 520 setting is used

Open clusters analyzed by OBA workgroup

Cluster	Age	Distance (kpc)	
Berkeley 25	4 Gyr	11.3	
Berkeley 81	1 Gyr	3	
NGC 6633	0.6 Gyr	0.4	
NGC 4815	0.5 Gyr	2.5	
NGC 6705	250-300 Myr	1.9	
NGC 2516	150 Myr	0.4	
NGC 2547	35 Myr	0.4	
NGC 3293	10 Myr	2.3	
NGC 6530	2.3 Myr	1.3	
Trumpler 14	1-3 Myr	2.3	


- Cluster selection is based on science interest, coverage of ages and metallicities. Overlap with existing data is generally avoided, except for calibration purposes.
- The table lists the clusters analyzed for iDR3.
- Older clusters were also analyzed because observations were taken in at least one of the hot-star gratings.

S/N problem

Continuum problem

HR14 continuum normalization

Continuum problem

HR14 continuum normalization

Results

Results (iDR3)

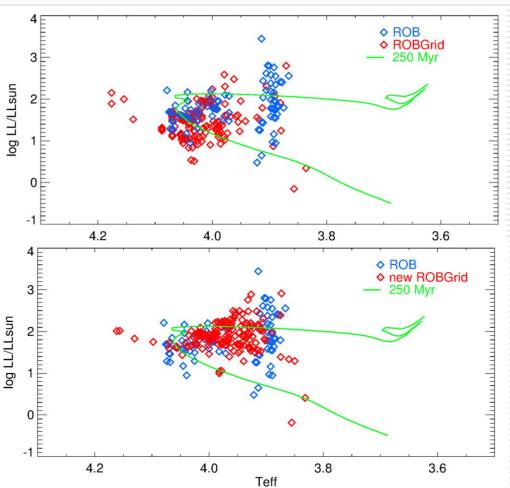
Cluster	ROB	Liege	IAC	ROBGrid	
Berkeley 25				81	
Berkeley 81				118	
NGC 6633					16
NGC 4815				113	
NGC 6705	97			168	10
NGC 2516					16
NGC 2547					26
NGC 3293	97	120		528	8
NGC 6530					44
Trumpler 14		12	11 3	135	6

 The table lists, per cluster, the number of stars that were analyzed by each of the nodes.

 When two numbers are given the first refers to the Giraffe data, the second to the UVES data.

Results

Results – parameters provided


	Teff	Log g	Metal.	Micro.	Vsini	Vrad	Abund.	Flags
ROBGrid	\checkmark	\checkmark			\checkmark	\checkmark		\checkmark
ROB	\checkmark	\checkmark	[Fe/H]	\checkmark	\checkmark			\checkmark
Liege	\checkmark	~			\checkmark	\checkmark	He, Mg, Si	~
IAC	\checkmark	\checkmark			\checkmark		He	

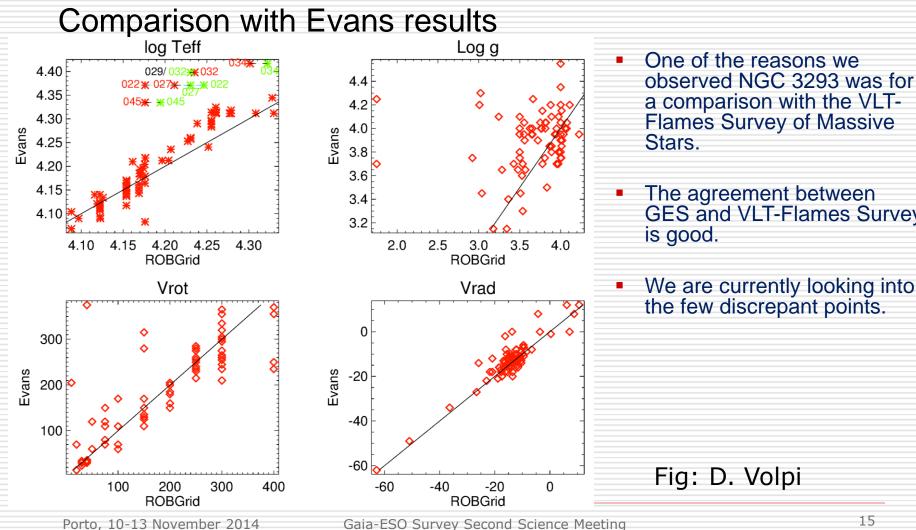
 All nodes provide Teff, log g and v sin i. Other parameters provided differ from one node to the other.

Comparison nodes

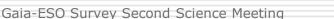
Comparison nodes

- ROBGrid and Liege are in good agreement (B-type stars). ROBGrid and IAC agree well, with one outlier (O-type stars).
- Agreement ROBGrid and ROB (Atype stars) is not so good.
- We plot the stars in a so-called "spectroscopic" HR diagram.
- The y-axis is log T_{eff}⁴/g = log L/M (relative to solar value).
- Experimenting with normalization of ROBGrid improves the agreement.
- The distribution of the ROB values of the A-type stars is odd: many stars fall in region that should not be densely populated.

NGC 6705


Porto, 10-13 November 2014

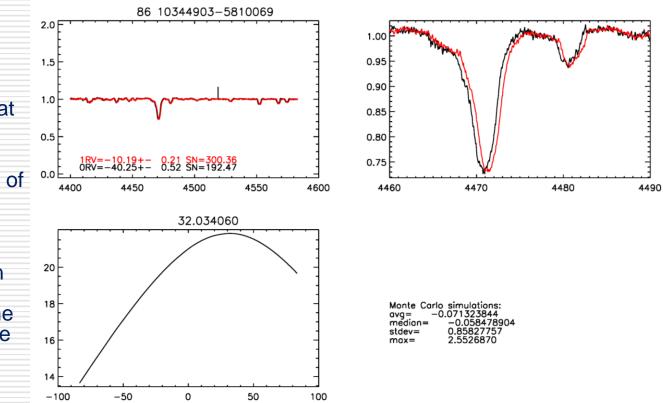
Homogenization


- If ROB, Liege or IAC values exist, use those
 Use ROB if ROB-Teff < 12000 K
- Use ROBGrid otherwise

Science results

B-type stars

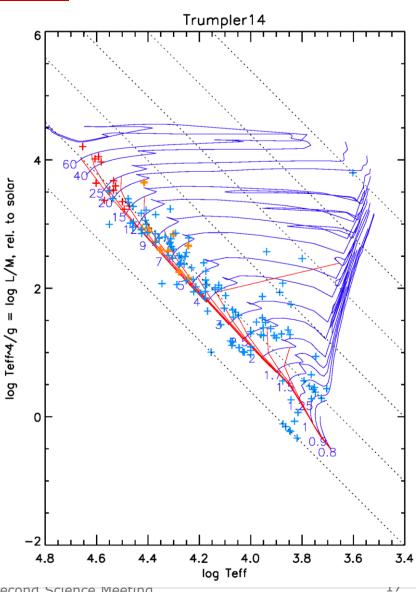
- Flames Survey of Massive The agreement between
 - GES and VLT-Flames Survey is good.
 - We are currently looking into the few discrepant points.


Science results

Binarity

 We use the repeat observations to check for radial velocity changes that may indicate binarity.

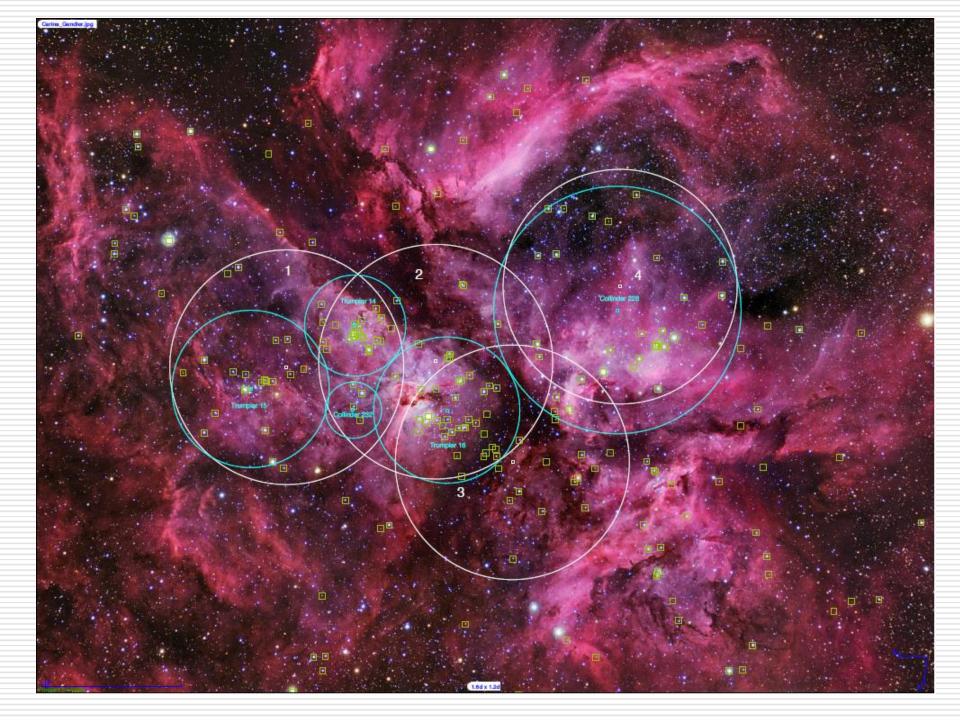
 We judge the significance of these changes by using Monte-Carlo simulations.


 The standard deviation on the Monte-Carlo result is also a good indicator of the radial velocity precision we can hope to attain.

Science results

HR diagram Tr 14

- We plot the Trumpler 14 stars in a socalled "spectroscopic" HR diagram.
- Red + = IAC, orange = Liege, blue = ROBGrid
- Evolutionary tracks (blue) and isochrones (red) are from Schaller et al. 1992.
- Dotted lines have constant log g.
- The isochrones show the cluster to be a few Myr old.
- A number of ROBGrid determinations have incorrect log g values.



Gaia-ESO Survey Second Science Meeting

Plans iDR4

Plans for iDR4 and beyond

- 3 additional nodes:
 - F. Martins (O-type stars)
 - A. Tkachenko (A-type stars)
 - J. Maíz Apellániz (spectral classification)
- Abundances of more elements
- Benchmark stars see poster Thierry Morel
- More systematic search for binarity
- Carina region (Tr 14+16 +Coll 228)

