

2014-11-13 – GES Second Science Meeting

# C-enriched objects and binaries

S. Van Eck, T. Merle, C. Abia T. Masseron, G. Traven, T. Zwitter, D. Hatzidimitriou, C. Worley, A. Hourihane



# WG14

#### 1. Common outliers dictionary

updated and adopted by all WG http://great.ast.cam.ac.uk/GESwiki/GesWg/GesWg14

+ Node specific flags

**2. Peculiarities** that endanger parameters and abundances determinations:

- Reduction issues
- Binaries  $\rightarrow$  T. Merle (2<sup>nd</sup> part of this talk)
- Emission lines (continuum placement) → T. Zwitter
- Molecular bands (continuum placement)
- 3. Peculiar objects characterization

#### **UVES:** Tracking C-enriched stars



# **UVES: Tracking C-enriched stars**



## **UVES: Tracking C-enriched stars**



| CNAME            | Teff | log g | [Fe/H] | Vt   | remarks |
|------------------|------|-------|--------|------|---------|
| 18033785-3009201 | 4483 | 2.44  | 0.19   | 1.5  | GES     |
| 19241832+0057159 | 5467 | 4.51  | 0.13   | 1.01 | GES     |
| 15532925-4059522 | 5256 | 3.80  | 0.30   | 1.2  | GES     |
| 21094323-0156596 | 5415 | 4.4   | 0.27   | 1.08 | GES     |
| 17251797-5531479 | 4370 | 1.05  | 0.1    | 2.3  | WG14    |
|                  | 4372 | 1.04  | -0.04  | 2.48 | GES     |
| 12581939-6453533 | 4062 | 1.39  | 0.01   | 1.20 | WG14    |
|                  | 4062 | 1.39  | 0.01   | 1.41 | GES     |
| 12202074+0318444 | 4440 | 1.95  | -0.40  | 1.50 | GES     |
| 19584548+1929320 | 4144 | 2.41  | 0.11   | 1.3  | WG14    |
|                  | 3899 | 1.51  | -0.06  | 1.49 | GES     |
| 11140585-7729058 | 3900 | 0.50  | -0.50  | 1.6  | WG14    |
|                  | 3900 | 1.59  | -0.1   | -    | GES     |
| 18472891-0542189 | 4540 | 3.72  | -      | -    | WG14    |
|                  | 4540 | 3.72  | -      | -    | GES     |
| 21300361-1230394 | 4490 | 4.70  | 0.0    | 1.0  | WG14    |
|                  | 4494 | 4.69  | -      | -    | GES     |
| 13201799-0503160 | 4962 | 3.37  | -0.45  | 1.24 | GES     |
| 14194521-0506063 | 4722 | 3.04  | -0.26  | 1.36 | GES     |

BACCHUS code (interactive mode)

+ Visual inspection of spectra

 $\rightarrow$  GES parameters confirmed in most cases

Clearly improved in 4 cases out of 13 (coolest objects)

| CNAME            | Teff | log g | [Fe/H] | Vt   | remarks |
|------------------|------|-------|--------|------|---------|
| 18033785-3009201 | 4483 | 2.44  | 0.19   | 1.5  | GES     |
| 19241832+0057159 | 5467 | 4.51  | 0.13   | 1.01 | GES     |
| 15532925-4059522 | 5256 | 3.80  | 0.30   | 1.2  | GES     |
| 21094323-0156596 | 5415 | 4.4   | 0.27   | 1.08 | GES     |
| 17251797-5531479 | 4370 | 1.05  | 0.1    | 2.3  | WG14    |
|                  | 4372 | 1.04  | -0.04  | 2.48 | GES     |
| 12581939-6453533 | 4062 | 1.39  | 0.01   | 1.20 | WG14    |
|                  | 4062 | 1.39  | 0.01   | 1.41 | GES     |
| 12202074+0318444 | 4440 | 1.95  | -0.40  | 1.50 | GES     |
| 19584548+1929320 | 4144 | 2.41  | 0.11   | 1.3  | WG14    |
|                  | 3899 | 1.51  | -0.06  | 1.49 | GES     |
| 11140585-7729058 | 3900 | 0.50  | -0.50  | 1.6  | WG14    |
|                  | 3900 | 1.59  | -0.1   | -    | GES     |
| 18472891-0542189 | 4540 | 3.72  | -      | -    | WG14    |
|                  | 4540 | 3.72  | -      | -    | GES     |
| 21300361-1230394 | 4490 | 4.70  | 0.0    | 1.0  | WG14    |
|                  | 4494 | 4.69  | -      | -    | GES     |
| 13201799-0503160 | 4962 | 3.37  | -0.45  | 1.24 | GES     |
| 14194521-0506063 | 4722 | 3.04  | -0.26  | 1.36 | GES     |

BACCHUS code (interactive mode)

+ Visual inspection of spectra

 $\rightarrow$  GES parameters confirmed in most cases

Clearly improved in 4 cases out of 13 (coolest objects)







GES parameters + solar-scaled composition WG14 parameters + re-determined CNO

# **GES C-enriched candidates: abundances**



 $\rightarrow$  Extrinsic stars, previously unknown in the literature

#### GES extrinsic stars: abundances



 $\rightarrow$  s-process abundance profile predictions agree remarkably well with abundance determinations of GES extrinsic stars

# GES extrinsic stars: binarity

• Radial velocities:

| CNAME                   | Date                           | Vr(km/s) | Err_Vr(km/s) | Ref.                   |              |  |
|-------------------------|--------------------------------|----------|--------------|------------------------|--------------|--|
| GES<br>13201799-0503160 | 2008-03-1                      | 2.6      | 0.9          | Kordopatis et al. 2013 | → binary     |  |
|                         | 2012-06-22                     | 42.18    | 0.6          | GES                    |              |  |
| GES<br>14194521-0506063 | 2011-2012                      | 6        | 7            | Newton et al. 2014     | → Binary (?) |  |
|                         | 2012-05-29<br>to<br>2012-06-21 | -20.4    | 0.6          | GES                    |              |  |

 $\rightarrow$  Extrinsic stars:

owe their overabundances to a mass transfer from a TPAGB star





[hs/ls] is expected to depend on:

- [Fe/H]
- Stellar mass
- Partial mixing parameters
- Time spent on the AGB (mass loss)

ightarrow efficient nucleosynthesis probe



[hs/ls] is expected to depend on:

- [Fe/H]
- Stellar mass
- Partial mixing parameters
- Time spent on the AGB (mass loss)
- ightarrow efficient nucleosynthesis probe

However: No observed correlation [hs/ls] vs [Fe/H] observed for AGB stars!



Instrinsic S stars (HERMES (Mercator) spectra) Van Eck &Neyskens in prep.

#### $\rightarrow$ But strong correlation observed for extrinsic stars



**Fig. 9.** Diagram of [s/Fe] *versus* [Fe/H] (top) and [hs/ls] *versus* [Fe/H] (bottom) for several classes of chemically peculiar binary stars. Metal-rich barium stars (*filled red squares*); barium giants previously analyzed (*red open squares*); barium dwarfs (*plus red crosses*); CH stars (*blue open polygons*); yellow symbiotic (*green symbols*) and CEMP-s stars which are *members* of binary systems (*red filled circles*)

Ba, yellow symbiotics, CH, CEMP-s Pereira et al., 2001A&A 533, A51

Extrinsic stars bear the signature of an AGB-completed s-process  $\rightarrow$  efficient s-process nucleosynthesis probes

 $\rightarrow$  And correlation observed for extrinsic GES stars



→ The high precision of GES abundances will allow to detect a possible second parameter in the [hs/ls] vs [Fe/H] correlation





→ The high precision of GES abundances will allow to detect a possible second parameter in the [hs/ls] vs [Fe/H] correlation

# Conclusions

- Extrinsic stars uncovered and characterized within the GES
- Complementary approaches of WG11 and WG14
- Binarity checked (already confirmed in some cases)
- Contrarily to
  - AGB stars (very cool, crowded spectra)
  - or post-AGB stars (are they really post-"TPAGB"?)
    extrinsic stars are ideal probes of AGB nucleosynthesis
- Follow-up observations