Microscopic Diffusion in Stellar Plasmas

Anne Thoul ULg

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

OUTLINE

What is a plasma and miscellaneous considerations Debye shielding

Description of stellar plasmas Chapman-Enskog theory Approximate solutions

Description of stellar plasmas Burgers equations Approximate solutions

Collision integrals

Summary

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop 2

OUTLINE

What is a plasma and miscellaneous considerations Debye shielding

Description of stellar plasmas Chapman-Enskog theory Approximate solutions

Description of stellar plasmas Burgers equations Approximate solutions

Collision integrals

Summary

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

What is a plasma?

a gas made of charged particles which behave in a « collective » manner

Kinetic energy of the particles must be much larger than the electrostatic potential energy

 $e\phi << kT$

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop 4

20-23 nov. 2006 Porto- Portugal

OUTLINE

What is a plasma and miscellaneous considerations Debye shielding

Description of stellar plasmas

Chapman-Enskog theory Approximate solutions

Description of stellar plasmas Burgers equations Approximate solutions

Collision integrals

Summary

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

Equations for stellar plasmas

The diffusion equation is obtained by solving (with some approximations) the Boltzmann equation for binary or multiple gas mixtures.

OUTLINE

What is a plasma and miscellaneous considerations Debye shielding

Description of stellar plasmas Chapman-Enskog theory Approximate solutions

Description of stellar plasmas Burgers equations Approximate solutions

Collision integrals

Summary

20-23 nov. 2006 Porto- Portugal

Chapman-Enskog theory

The total distribution function of a given species can be written as a convergent series, each term representing a successive approximation to the distribution function:

- Substitute into Boltzmann equation
- Linearize
- Get series of equations for each $f_i^{(n)}$ in terms of lower order approx.

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

Chapman-Enskog theory

 $f_i^{(0)}$ is a Maxwellian distribution function characterized by n_i , T, v_0

These parameters and their derivatives enter into successive approx. of the total distribution function and define the transport properties.

Transport coefficients are obtained by taking velocity moments of the first-order approximation of the distribution function.

Good estimates of the diffusion coefficients are given by the so-called first and second approximations to transport properties (obtained by expanding the first-order distribution function on the basis of Sonine polynomials, which gives a very rapidly convergent series (Chapman & Cowling 70))

Joint HELAS and CoRoT/ESTA Workshop

Element diffusion driven by ∇p (or ∇g), ∇T , ∇Ci

Electrons tend to rise but held back by E which counteracts g

Heavier elements tend to sink towards the center

 $\nabla T \Rightarrow$ thermal diffusion \Rightarrow tends to concentrate more highly charged and more massive particles towards hottest regions, i.e. center

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

OUTLINE

What is a plasma and miscellaneous considerations Debye shielding

Description of stellar plasmas Chapman-Enskog theory Approximate solutions

Description of stellar plasmas Burgers equations Approximate solutions

Collision integrals

Summary

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

Burgers' equations

Based on the Grad13 moment approximation and the use of a Fokker-Planck collision term in the Boltzmann equation.

i.e. computation of higher order moments of the Boltzmann equation, which allows a more direct evaluation of physical quantities of interest.

The main advantage over the Chapman & Cowling method is that it provides a more convenient way for handling multicomponent gases.

In the limit where collisions are very frequent and the temperatures of the various species are the same (collision-dominated plasma) the two methods are equivalent.

20-23	nov.	2006
Porto-	Port	ugal

Joint HELAS and CoRoT/ESTA Workshop

Underlying assumptions in Burgers equations:

- 1. Neglect radiative forces
- 2. Complete ionization
- 3. Maxwellian velocity distributions and same T for all species
- 4. Diffusion velocities << thermal velocities
- 5. No magnetic field
- 6. Collisions dominated by classical interactions between particles
- 7. Plasma is a dilute gas, i.e., ideal gas equation of state applies

6 and 7 not true when $\Lambda = n_0 \lambda_D^3$ is not >>1

In this case transport properties from Bolzmann equation wrong Quantum effects and dynamical shielding should be taken into account

20-23 nov. 2006 Porto- Portugal

Numerical solution

Fortran routine from Thoul, Bahcall & Loeb 94 is freely available

Note: as mentioned in the accompanying README file, there is a typo in equation 9 of TBL94, which should read

$$\ln \Lambda_{st} = \frac{1.6249}{2} \ln \left[1 + 0.18769 \left(\frac{4k_{\rm B} T \lambda}{Z_s Z_t e^2} \right) \right]$$

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

OUTLINE

What is a plasma and miscellaneous considerations Debye shielding

Description of stellar plasmas Chapman-Enskog theory Approximate solutions

Description of stellar plasmas Burgers equations Approximate solutions

Collision integrals

Summary

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

25

Comparisons

- Truncated Coulomb potential: $z_{ij} = 0.6$, $z'_{ij} = 1.3$, $z''_{ij} = 2$
- Modified Debye-Hückel potential: Paquette & al 86's fitted by Michaud & Proffitt 93

Truncated pure Coulomb potential is OK in the low density limit

20-23 nov. 2006 Porto- Portugal

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

Using $\ln \Lambda_{ij}$ as an approx. for C_{ij} is OK in the low density limit

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

Schlattl & Salaris 2003

Compare several classical calculations \Rightarrow all very close

Main sequence stars: ϕ remains very close to 2 for H and He \Rightarrow constant values can be assumed

20-23 nov. 2006 Porto- Portugal

Quantum corrections increase the efficiency of diffusion Their effect is more pronounced at higher densities

Note that the uncertainty on the diffusion coeffs is still ~10% due to the use of Burgers' formalism, which is only equivalent to the Chapman & Cowling's second-order approximation.

Sound speed in the Sun (Basu97-solar model)/Basu97

SS03 = most accurate resistance coeff. currently available By chance, Thoul et al 94 gives the closest results for the Sun

20-23 nov. 2006	Joint HELAS and CoRoT/ESTA	4
Porto- Portugal	Workshop	

OUTLINE

What is a plasma and miscellaneous considerations Debye shielding

Description of stellar plasmas Chapman-Enskog theory Approximate solutions

Description of stellar plasmas Burgers equations Approximate solutions

Collision integrals

Summary

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

Summary

Descriptions of stellar plasmas: all based on Boltzmann equation In interior of main-sequence stars, $\Lambda \sim 1$, i.e. not a « classical » plasma. \Rightarrow careful with validity of Boltzmann equation \Rightarrow No physically correct theory

Chapman-Cowling = for a H+e+trace ion plasma Burgers equivalent to 2nd-order Chapman-Cowling (ok in weakly coupled plasmas) More accurate results woul be obtained with a higher-order approx. but untractable for a multicomponent gas

Burgers much more tractable for multicomponent gas

The problem of the collision integrals

- easy in weakly coupled plasmas (pure Coulomb + cutoff at λ_{D} : analytic)
- shielded potential better but also only valid in weakly-coupled plasmas
- extrapolate to a modified Debye-Hückel \Rightarrow seems to give good results, but no physical argument

- recent quantum calculations available

Careful with the assumptions in the numerous approximations and fits

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

43

Summary

Descriptions of stellar plasmas: all based on Boltzmann equation

In interior of main-sequence stars, $\Lambda \sim 1$, i.e. not a « classical » plasma.

 \Rightarrow careful with validity of Boltzmann equation

 \Rightarrow No physically correct theory

Two theories: -Chapman-Enskog -Burgers

Chapman-Cowling = for a H+e+trace ion plasma

Burgers equivalent to 2nd-order Chapman-Cowling (ok in weakly coupled plasmas) More accurate results would be obtained with a higher-order approx. but untractable for a multicomponent gas

Burgers much more tractable for multicomponent gas

The problem of the collision integrals

- easy in weakly coupled plasmas (pure Coulomb + cutoff at λ_{p} : analytic)

- shielded potential better but also only valid in weakly-coupled plasmas

- extrapolate to a modified Debye-Hückel \Rightarrow seems to give good results, but no physical argument

- recent quantum calculations available

Careful with the assumptions in the numerous approximations and fits

20-23 nov. 2006 Porto- Portugal

Summary

Descriptions of stellar plasmas: all based on Boltzmann equation

- In interior of main-sequence stars, $\Lambda \sim 1$, i.e. not a « classical » plasma.
- \Rightarrow careful with validity of Boltzmann equation
- \Rightarrow No physically correct theory

Two theories: -Chapman-Enskog -Burgers

Chapman-Cowling = for a H+e+trace ion plasma

Burgers equivalent to 2nd-order Chapman-Cowling (ok in weakly coupled plasmas) More accurate results woul be obtained with a higher-order approx. but untractable for a multicomponent gas

Burgers much more tractable for multicomponent gas

The problem of the collision integrals:

- easy in weakly coupled plasmas (pure Coulomb + cutoff at λ_{D} : analytic)
- shielded potential better but also only valid in weakly-coupled plasmas

- extrapolate to a modified Debye-Hückel \Rightarrow seems to give good results, but no physical argument

- recent quantum calculations available

Careful with the assumptions in the numerous approximations and fits

20-23 nov. 2006 Porto- Portugal Joint HELAS and CoRoT/ESTA Workshop

45

46

Summary

Descriptions of stellar plasmas: all based on Boltzmann equation

- In interior of main-sequence stars, $\Lambda \sim 1$, i.e. not a « classical » plasma.
- \Rightarrow careful with validity of Boltzmann equation
- \Rightarrow No physically correct theory

Two theories: -Chapman-Enskog -Burgers

Chapman-Cowling = for a H+e+trace ion plasma

Burgers equivalent to 2nd-order Chapman-Cowling (ok in weakly coupled plasmas) More accurate results woul be obtained with a higher-order approx. but untractable for a multicomponent gas

Burgers much more tractable for multicomponent gas

The problem of the collision integrals:

- easy in weakly coupled plasmas (pure Coulomb + cutoff at λ_{n} : analytic)
- shielded potential better but also only valid in weakly-coupled plasmas
- extrapolate to a modified Debye-Hückel \Rightarrow seems to give good results, but no physical argument
- recent quantum calculations available

Careful with the underlying assumptions in the numerous approximations and fits 20-23 nov. 2006 Joint HELAS and CoRoT/ESTA Porto- Portugal Workshop

Summary

Descriptions of stellar plasmas: all based on Boltzmann equation In interior of main-sequence stars, $\Lambda \sim 1$, i.e. not a « classical » plasma. \Rightarrow careful with validity of Boltzmann equation \Rightarrow No physically correct theory Two theories: -Chapman-Enskog -Burgers Chapman-Cowling = for a H+e+trace ion plasma Burgers equivalent to 2nd-order Chapman-Cowling (ok in weakly coupled plasmas) More accurate results woul be obtained with a higher-order approx. but untractable for a multicomponent gas Burgers much more tractable for multicomponent gas The problem of the collision integrals: - easy in weakly coupled plasmas (pure Coulomb + cutoff at λ_{D} : analytic) - shielded potential better but also only valid in weakly-coupled plasmas - extrapolate to a modified Debye-Hückel \Rightarrow seems to give good results, but no physical argument - recent quantum calculations available Careful with the assumptions in the numerous approximations and fits Joint HELAS and CoRoT/ESTA 20-23 nov. 2006 47 Porto-Portugal Workshop