

Plan

- · Introduction
- Frozen Convection Approximations
- Time Dependent Convection
- · conclusion

Introduction

Perturbation of energy conservation equation:

$$i\omega T\delta s = \delta\varepsilon - \frac{1}{\rho}\nabla \bullet \left[\stackrel{\rho}{F} + \xi \left(\nabla \stackrel{\rho}{F} \right) - \left(\xi \cdot \nabla \right) \stackrel{\rho}{F} \right]$$

 In the stellar interior, the radiative energy transfer can be described by the diffusion approximation:

$$\hat{F} = -\frac{4ac}{3\rho\kappa}T^{3}\nabla T$$

a Radiative pressure constant

C The speed of light

K The opacity of the matter

References

- Baker & Kippenhahn, 1962, 1965
- Ando ξ Osakí, 1975
- Saío & Cox, 1980
- Cox et al., 1987
- Lí, 2000
- Löffler, 2003
- Grígahcène, Phd thesís, Univ. Granada,
 2004.

and the First of

Ignoring the lagrangian variation of
convective flux:
$$\mathcal{F}_{c}^{F} = 0$$
In this case $\delta L_{c} = 2L_{c} \frac{\xi_{r}}{r}$ Perturbed Equation: $\delta L_{c} = 2L_{c} \frac{\xi_{r}}{r}$ $i\sigma T \delta s = \delta c - \frac{d(\delta L_{R})}{dm} + \lambda(\lambda + 1) \frac{\xi_{R}}{r} \frac{dL}{dm}$ $+ \frac{\lambda(\lambda + 1)}{4\pi r^{3} \rho} L_{c} \left[\frac{\delta T}{r(\frac{dT}{dr})} - \frac{\xi_{r}}{r} \right]$ $- \frac{\lambda(\lambda + 1)}{4\pi r^{3} \rho} L_{c} \frac{\xi_{R}}{r} - 2 \frac{d}{dm} \left(L_{c} \frac{\xi_{r}}{r} \right) \right]$ Work integral
(radial case): $\mathcal{W} = -\int_{0}^{M} (\Gamma_{3} - 1) \Re \left\{ \frac{\delta \rho}{\rho \sigma} \left[\frac{d(\delta L_{R})}{dm} - \delta \varepsilon + 2 \frac{d}{dm} \left(L_{c} \frac{\xi_{r}}{r} \right) \right] \right\} dm$

FIG. 1.—Calculated instability strip (shown in color for various ℓ) and calculated main sequence (solid line) compared with theoretical the red edge of the δ Scuti instability strip (Breger & Pamyatnykh 1998; triple-dot-dashed line) and the observational γ Dor instability strip (Handler & Shobbrook 2002; dot-dashed line). Also shown are all 30 bona fide γ Dor stars (see Table 2). See text for details.

Warner et al., 2003

Pesnell oscillations code

Find dependent convection
Hydrodynamic equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \nabla) = 0$$

$$\frac{\partial (\rho \nabla)}{\partial t} + \nabla \cdot (\rho \nabla) = -\rho \nabla \Phi + \nabla \cdot P$$

$$\frac{\partial (\rho U)}{\partial t} + \nabla \cdot (\rho U \nabla) = \rho \varepsilon_N - \nabla \cdot P_R - P \otimes \nabla \nabla$$

$$P = P_G + P_R$$

$$P = \rho_G + P_R$$

$$P = P_G + P_R$$

$$P = P_R + P_R$$

Convective fluctuationsplitting the variables $p = \bar{y} + \Delta y$
 $p = \mu + V$ $p = \bar{y} + \Delta y$
 $p = \mu + V$ Dean Equations $\frac{d\bar{p}}{dt} + \bar{p} \nabla \cdot (\hat{p}) = 0$
 $p \frac{d\bar{p}}{dt} = -\bar{p} \nabla \bar{\Phi} - \nabla (\bar{p}_{c} + \bar{p}_{R} + \underline{\bar{p}}_{r}) + \nabla \cdot (\bar{\beta}_{c} + \bar{\beta}_{R} + \underline{\bar{p}}_{r})$
 $p \overline{r} \frac{d\bar{s}}{dt} = -\nabla \cdot (\hat{F}_{R} + \underline{f}_{C}) + \bar{p} \bar{s}_{R} + \underline{\bar{p}}_{R} + \underline{f} \cdot \nabla \nabla (p_{c} + p_{R})$
 $p \frac{d}{dt} \left(\frac{1}{2} - \overline{p} \right)^{2} = -\overline{p} \cdot \underline{\bar{s}}_{2} - \frac{\hat{f} \cdot \nabla (p_{c} + p_{R})}{\hat{P} \cdot \nabla (p_{c} + p_{R})} - \nabla \cdot \underline{f}_{2}^{2}$ $p = \overline{p} \overline{r}_{T} - \overline{\beta}_{T}$ $p = p \overline{r}_{T} - \overline{\beta}_{T}$ $p = p \overline{r}_{T}^{2}$ $p = p \overline{r}_{T}^{2}$

IN Cabriel's Theory.
Fuctuation Equations

$$\frac{\overline{\rho}}{dt}\left(\frac{\Delta\rho}{\overline{\rho}}\right) + \nabla \cdot \left(\rho t^{\overline{\rho}}\right) = 0$$

$$\frac{\overline{\rho}}{dt}\left(\frac{\Delta\rho}{\overline{\rho}}\right) + \frac{\overline{\rho}}{2}$$

$$\frac{\overline{\rho}}{dt}\left(\frac{\Delta\rho}{\overline{\rho}}\right) + \nabla \cdot \left(\rho t^{\overline{\rho}}\right) = 0$$

$$\frac{\overline{\rho}}{dt}\left(\frac{\Delta\rho}{\overline{\rho}}\right) + \nabla \cdot \left(\rho t^{\overline{\rho}}\right) = 0$$

$$\frac{\overline{\rho}}{dt}\left(\frac{\Delta\rho}{\overline{\rho}}\right) + \nabla \cdot \left(\rho t^{\overline{\rho}}\right) = 0$$

$$\frac{\overline{\rho}}{dt}\left(\frac{\Delta\rho}{\overline{\rho}}\right) + \frac{\overline{\rho}}{2}$$

$$\frac{\overline{\rho}}{dt}\left(\frac{\Delta\rho}{\overline{\rho}}\right) + \frac{\overline{\rho}}{2}$$

$$\frac{\overline{\rho}}{dt}\left(\frac{\overline{\rho}}{\overline{\rho}}\right) + \frac{\overline{\rho}}{2}$$

$$\frac{\overline{\rho}}{2}$$

Equation of Energy conservation

$$i\sigma T\delta s = \delta\varepsilon_{N} + \left(\frac{\delta\rho}{\rho} + \frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\delta r\right)\right)\frac{dL}{dm} - \frac{d\delta\left(L_{R} + \frac{L_{C}}{m}\right)}{dm}$$
$$+ \frac{l(l+1)}{4\pi r^{3}\rho}\left(L_{R}\left(\frac{\delta T}{r(dT/dr)} - \frac{\delta r}{r}\right) - \frac{L_{C}}{m}\frac{\delta r_{H}}{r}\right)$$
$$+ \frac{l(l+1)}{\rho \overline{r}}FCH + \frac{\delta\varepsilon_{2}}{m} + \delta\left(\frac{\rho}{V} \cdot \frac{\nabla(p_{G} + p_{R})}{\rho}\right)$$

Amplitude of the horizontal component of the convective flux

FCH

 σ

τ

ML Perturbation

The main source of uncertainty in any ML theory of convection-pulsation interaction is in the way to perturb the mixing-length. In the results presented below, we used :

$$\frac{\delta l}{l} = \begin{cases} \frac{1}{1 + (\sigma \tau_{c})^{2}} \frac{\delta H_{P}}{H_{P}} \\ \frac{\delta H_$$

Effects of different values of metallicity on g Dor Instability strip

- The γ Doradus instability strip is not influenced by metallicity.
- We have nearly the same instability
 Strip for models
 with different
 matallicities.

Comparíson: Effects on frequencies

l	п	f_{ad}	Δf_{PC}	$\Delta f_{\delta F_0}$	$\Delta f_{\delta p_1}$	$\Delta f_{\delta(p_1,s_2)}$	$\Im(\omega_{PC})$	$\Im(\omega_{\delta F_0})$	$\Im(\omega_{\delta p_i})$	$\Im(\omega_{\delta(p_1, \epsilon_2)})$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
δ Sct: Model 7 of Table 1, $t_{dyn} = 3460$ s										
0	1	1.631E+02	2.322E-02	2.321E-02	2.324E-02	2.322E-02	-6.449E-07	-7.699E-07	-9.807E-07	-8.291E-07
	4	3.125E+02	1.214E-02	-6.325E-03	-7.519E-04	-3.993E-03	-9.658E-05	-3.475E-05	-1.192E-04	-3.061E-05
1	-2	1.197E+02	2.765E-02	2.765E-02	2.765E-02	2.765E-02	-1.170E-09	-9.845E-10	-6.680E-10	-6.906E-10
	3	2.723E+02	9.861E-03	4.281E-03	6.390E-03	5.196E-03	-3.894E-05	-2.907E-05	-6.623E-05	-3.432E-05
2	-4	1.081E+02	1.372E-02	1.372E-02	1.372E-02	1.372E-02	-1.021E-09	-7.092E-10	-1.555E-10	-2.415E-10
	2	3.005E+02	7.918E-03	-4.078E-03	-1.708E-04	-2.358E-03	-6.793E-05	-3.305E-05	-8.948E-05	-2.932E-05
3	-5	1.205E+02	1.919E-02	1.919E-02	1.919E-02	1.919E-02	-2.942E-09	-2.611E-09	-1.329E-09	-1.364E-09
	2	3.172E+02	5.659E-03	-1.603E-02	-9.262E-03	-1.296E-02	-1.106E-04	-3.456E-05	-1.137E-04	-1.155E-05
γ Dor: Model 5 of Table 1, $t_{dym} = 3800$ s										
1	-82	3.811E+00	2.039E-04	-2.608E-04	-2.760E-04	-2.619E-04	-1.855E-06	2.166E-07	5.067E-07	-5.007E-08
	-22	1.365E+01	3.082E-03	3.082E-03	3.082E-03	3.082E-03	-6.447E-09	-6.134E-10	3.925E-09	-1.545E-09
	-2	1.181E+02	3.343E-02	3.343E-02	3.343E-02	3.343E-02	-7.644E-09	-8.936E-09	-1.097E-08	-9.551E-09
2	-94	5.752E+00	-1.270E-03	-1.729E-03	-1.746E-03	-1.709E-03	-1.289E-06	6.185E-07	8.926E-07	-1.631E-07
	-23	2.251E+01	4.231E-03	4.230E-03	4.230E-03	4.230E-03	-1.010E-08	-2.919E-09	1.291E-08	-4.308E-09
	-4	1.065E+02	1.800E-02	1.800E-02	1.800E-02	1.800E-02	-5.679E-09	-5.231E-09	-6.481E-09	-4.628E-09
3	-99	7.730E+00	-1.274E-03	-1.687E-03	-1.693E-03	-1.631E-03	-8.644E-07	6.347E-07	1.058E-06	-4.975E-07
	-26	2.852E+01	3.816E-03	3.814E-03	3.813E-03	3.814E-03	-3.132E-08	-9.095E-09	4.206E-08	-9.212E-09
	-6	1 071E+02	1 733E-02	1 733E-02	1.733E-02	1.733E-02	-2.221E-09	-2.226E-09	-2.774E-09	-1.702E-09

Table 4. Frequencies $(f = \Re\{\sigma\}/(2\pi))$ and dimensionless damping rates $(\Im\{\omega\} = \Im\{\sigma\}, \delta_{syn})$ for different modes of a δ Sct model (top) and a γ Dor model (bottom). Column 3 gives the adiabatic frequency (in μ H2). Column 4 gives the difference between the non-adiabatic frequencies of OF C models and the adiabatic frequencies. Columns 5 to 7 give the difference between the non-adiabatic frequencies of OE models and the adiabatic frequencies. Columns 5 to 7 gives the difference between the non-adiabatic frequencies of DEC models and the adiabatic frequencies. Columns 5 to 7 gives the difference between the non-adiabatic frequencies of TDC models and the adiabatic frequencies. Columns 9 to 11); it is negative for unstable modes and positive for stable modes. The perturbation of trabulent pressure δ_{P^*} is taken into account in all the TDC models. The perturbation of turbulent pressure δ_{P^*} is taken into account in Columns 6, 7, 10 and 11. The perturbation of turbulent kinetic energy dissipation δ_{r_2} is taken into account in Columns 7 and 11.

