UNIVERSIDADE
DO PORTO

Porto Oscillation Code - POSC -

Mário João P. F. G. Monteiro

Centro de Astrofísica da Universidade do Porto and
Faculdade de Ciências da Universidade do Porto

The code has been developed to be applied to the Sun. It determines the frequencies of linear adiabatic radial and non-radial oscillations for models of solar-type stars.

As input it uses a model provided in the AMDL format defined by Jørgen Christensen-Dalsgaard and corresponding to,

$$
\begin{aligned}
& a_{1}=\frac{m_{r, 0}}{r^{3}} \frac{R^{3}}{M} \\
& a_{2}=-\frac{1}{\Gamma_{1,0}} \frac{\mathrm{~d} \log P_{0}}{\mathrm{~d} \log r}=\frac{r g_{0}}{c_{0}^{2}} \\
& a_{3}=\Gamma_{1,0} \\
& a_{4}=\frac{1}{\Gamma_{1,0}} \frac{\mathrm{~d} \log P_{0}}{\mathrm{~d} \log r}-\frac{\mathrm{d} \log \rho_{0}}{\mathrm{~d} \log r}=\frac{r}{g_{0}} N_{0}^{2} \\
& a_{5}=\frac{4 \pi r^{3} \rho_{0}}{m_{r, 0}}
\end{aligned}
$$

The equations for the amplitudes

$$
\begin{aligned}
& \left(1-\frac{S_{l}^{2}}{\omega^{2}}\right) \frac{\tilde{P}}{\rho_{0}}-\frac{1}{r^{2}}\left(g_{0}-c_{o}^{2} \frac{\mathrm{~d}}{\mathrm{~d} r}\right)\left(r^{2} \xi_{r}\right)+\frac{S_{l}^{2}}{\omega^{2}} \tilde{\Phi}=0 \\
& \frac{1}{\rho_{0}}\left(\frac{g_{0}}{c_{0}^{2}}+\frac{\mathrm{d}}{\mathrm{~d} r}\right) \tilde{P}-\left(\omega^{2}-N_{0}^{2}\right) \xi_{r}-\frac{\mathrm{d} \tilde{\Phi}}{\mathrm{~d} r}=0 \\
& \tilde{P}+\frac{\rho_{0} c_{0}^{2} N_{0}^{2}}{g_{0}} \xi_{r}-\frac{S_{l}^{2}}{4 \pi G} \tilde{\Phi}+\frac{c_{0}^{2}}{4 \pi G r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} \tilde{\Phi}}{\mathrm{~d} r}\right)=0 .
\end{aligned}
$$

Equilibrium structure:

$$
\rho_{0}, g_{0}, c_{0}^{2}, N_{0}^{2}
$$

Radial amplitude of the eigenfunctions:

$$
\xi_{\underline{r}, \tilde{P}, \tilde{\Phi}}
$$

Reduce variables

$$
\begin{cases}y_{1}=\frac{\xi_{r}}{r} \\
y_{2}=\frac{\omega^{2}}{g} \xi_{h}=\frac{1}{r g}\left(\frac{\tilde{P}}{\rho}-\tilde{\Phi}\right) \\
y_{3}=\frac{\tilde{\Phi}}{r g} & r \frac{\mathrm{~d} y_{1}}{\mathrm{~d} r}=\left(a_{2}-3\right) y_{1}+\left[\frac{l(l+1)}{\sigma^{2}} a_{1}-a_{2}\right] y_{2}+a_{2} y_{3} \\
y_{4}=\frac{1}{g} \frac{\mathrm{~d} \tilde{\Phi}}{\mathrm{~d} r} & r \frac{R^{3}}{\sigma^{2}} \omega^{2} \\
& r \frac{\mathrm{~d} y_{2}}{\mathrm{~d} r}=\left(\frac{\sigma^{2}}{a_{1}}-a_{4}\right) y_{1}+\left(1+a_{4}-a_{5}\right) y_{2}-a_{4} y_{3} \\
\begin{array}{ll}
\square \frac{\mathrm{d} \boldsymbol{y}}{\mathrm{~d} \boldsymbol{x}}=\boldsymbol{A} \cdot \vec{y} & r \frac{\mathrm{~d} y_{4}}{\mathrm{~d} r}=a_{4} a_{5} y_{1}+a_{2} a_{5} y_{2}+\left[l(l+1)-y_{3}+y_{4}\right.
\end{array}\end{cases}
$$

Numerical scheme

A second order scheme for the integration of the equations is used corresponding to

$$
\vec{y}_{n+1}=\vec{y}_{n}+\frac{x_{n+1}-x_{n}}{2}\left[\left(\frac{\mathrm{~d} \vec{y}}{\mathrm{~d} x}\right)_{n}+\left(\frac{\mathrm{d} \vec{y}}{\mathrm{~d} x}\right)_{n+1}\right]
$$

This corresponds to estimate the values of the functions at a new mesh point ($n+1$) using the following expression,

$$
\vec{y}_{n+1}=\left[\left(\mathcal{I}-\frac{x_{n+1}-x_{n}}{2 x_{n+1}} \mathcal{A}_{n+1}\right)^{-1} \otimes\left(\mathcal{I}+\frac{x_{n+1}-x_{n}}{2 x_{n}} \mathcal{A}_{n}\right)\right] \cdot \vec{y}_{n}
$$

Resonance cavity

Boundary conditions I

At the centre we use:

$$
\begin{aligned}
& y_{\mathrm{in}, 1}=\frac{4 \pi \rho_{\mathrm{c}}}{3} \frac{l}{\sigma^{2}} y_{\mathrm{in}, 2} \\
& y_{\mathrm{in}, 4}=l y_{\mathrm{in}, 3}
\end{aligned}
$$

An expansion for squared radius at the centre is used for the first step.

For the mesh point at the top the default boundary corresponds to an isothermal atmosphere:

$$
\begin{aligned}
y_{\mathrm{out}, 1}=2 \frac{\left(L^{2} / \sigma^{2}-a_{2 t}\right) y_{\mathrm{out}, 2}+a_{2 t} y_{\mathrm{out}, 3}}{a_{4 t}+4-\gamma^{1 / 2}} \\
\gamma \equiv\left(a_{2 t}-a_{4 t}-4\right)^{2}+4\left(\sigma^{2}-a_{4 t}\right)\left(\frac{L^{2}}{\sigma^{2}}-a_{2 t}\right)
\end{aligned}
$$

$$
y_{\mathrm{out}, 4}=-(l+1) y_{\mathrm{out}, 3}
$$

Boundary conditions II

For an isothermal atmosphere only solutions, with a specific frequency, having a turning point at the surface (positive value of γ) are calculated.

The full reflection at the top, corresponding to a zero lagrangian pressure perturbation, is also available as;

$$
y_{\mathrm{out}, 1}=y_{\mathrm{out}, 2}+y_{\mathrm{out}, 3}
$$

The full reflection as defined by Cunha (1999) is also implemented as;

$$
y_{\mathrm{out}, 1}=\frac{y_{\mathrm{out}, 2}+y_{\mathrm{out}, 3}}{1+\frac{4+\sigma^{2}}{a_{3} a_{4}}}
$$

The frequencies

The frequencies are found as the solution of an eigenvalue equation obtained from the values of two independent solutions at the fitting point, as calculated with

$$
\begin{array}{lll}
y_{\mathrm{in}, 2}=y_{\mathrm{out}, 2}=1 & \& & y_{\mathrm{in}, 3}=y_{\mathrm{out}, 3}=1 \\
y_{\mathrm{in}, 2}=y_{\mathrm{out}, 2}=1 & \& & y_{\mathrm{in}, 3}=y_{\mathrm{out}, 3}=0
\end{array}
$$

The code searches for all solutions of the eigenvalue equation in a specified range of frequencies having the required mode degree.

The search of the zeros in frequency is optimized for g or p modes.
The mode identification is done as in Unno et al (1989) by using the normalized eigenfunctions for pressure and displacement.

Numerical precision

Richardson extrapolation is used:

$$
\sigma^{2}=\frac{\alpha}{\alpha-1} \sigma_{N}^{2}-\frac{1}{\alpha-1} \sigma_{N^{\prime}}^{2} \quad \text { with } \quad \alpha=\left(\frac{N}{N^{\prime}}\right)^{2}
$$

Due to the low order of the integration scheme being used the precision of the frequencies is strongly dependent on the mesh in which the model is given.

Tipically a mesh with 6000-8000 points is used with a distribution in radius defined by the type of star and type of modes (p or g) for which the frequency is being calculated.

A comparison with ADIPLS using solar models gives a difference below $0.004 \mu \mathrm{~Hz}$ for low and intermediate degree modes. The difference for radial modes is slightly higher (up to $0.02 \mu \mathrm{~Hz}$).

Eigenfunctions

The mode energy is calculated according to

$$
E_{n l} \equiv \frac{4 \pi}{M} \frac{\int_{0}^{R}\left[\xi_{r, n l}^{2}(r)+L^{2} \xi_{h, n l}^{2}(r)\right] r^{2} \rho_{0} \mathrm{~d} r}{\xi_{r, n l}^{2}(R)+L^{2} \xi_{h, n l}^{2}(R)}
$$

The eigenfunctions are normalized to 1 at $r=\mathbf{R}$.

Kernels are also available (but have never been checked against the output from other codes).

Re-meshing

To re-mesh the models we follow the prescription by ChristensenDalsgaard \& Berthomieu (1991);

$$
\begin{gathered}
f_{1}(x)=\frac{\left|\frac{a_{2}}{x^{2} a_{1}}\right|}{\max \left|\frac{a_{2}}{x^{2} a_{1}}\right|} \quad f_{2}(x)=\frac{\left|\frac{a_{1} a_{4}}{x^{2}}\right|}{\max \left|\frac{a_{1} a_{4}}{x^{2}}\right|} \quad f_{3}(x)=\frac{\left|\frac{a_{2} a_{3}}{x^{2}}\right|}{\max \left|\frac{a_{2} a_{3}}{x^{2}}\right|} \\
z(x)=\int_{0}^{x}\left[1+C_{1} f_{1}\left(x^{\prime}\right)+C_{2} f_{2}\left(x^{\prime}\right)+C_{3} f_{3}\left(x^{\prime}\right)\right]^{1 / 2} \mathrm{~d} x^{\prime}
\end{gathered}
$$

New mesh points are added when the separation in z of the original mesh is larger than $z(1) / N$, where N is the required number of mesh points. All original points are kept in the new mesh.

Parameters	MS/LM/P	MS/LM/G	PMS/IM/P
C_{1}	10	0.025	1000
C_{2}	0.01	0.1	10
C_{3}	0.015	0.0001	100

