Dynamical processes in stellar radiation zones

Advances in secular magnetohydrodynamics of rotating stars

- S. Mathis^{1,2}, P. Eggenberger^{3,4}, T. Decressin³, A. Palacios¹, L. Siess⁵, C. Charbonnel^{3,6}, S. Turck-Chièze¹, J.-P. Zahn²
- ¹: CEA/DSM/DAPNIA/SAp
- ²: Observatoire de Paris-Section de Meudon; LUTH; GdR Dynamo du CNRS
- ³: Observatoire de l'Université de Genève
- 4: Institut d'Astrophysique et de Géophysique de l'Université de Liège
- ⁵: Institut d'Astronomie et d'Astrophysique de l'Université Libre de Bruxelles
- 6: Laboratoire d'Astrophysique de Toulouse-Tarbes, Observatoire Midi-Pyrénées

Joint HELAS and CoRoT/ESTA Workshop on Solar/Stellar Models and Seismic Analysis Tools, 20-23 November 2006; Centro de Astrofísica da Universidade do Porto, Portugal

Secular magnetohydrodynamics of stellar radiation zones

A coherent picture of the stars and their evolution — need to understand the dynamical transport processes which operate in their radiation zones

Major impact of differential rotation

Those processes transport

Matter — modify chemical composition & nucleosynthesis

Major impact on the internal dynamics, the evolution and the environment of the stars

Impact on stellar evolution

Transport in Convection Zones

Brun & Toomre 2002

Brun & Palacios, in prep.

Massive parallel simulations - no simple prescription (yet)

Rotational transport

standard model

Transport equations in stellar interiors

- Dynamics equation (Navier-Stockes equation)

$$\rho \left[\partial_t V + (V \cdot \nabla) V\right] = -\nabla P - \rho \nabla \phi + \nabla \cdot ||\tau|| + \left[\frac{1}{\mu_0} \left(\nabla \wedge B\right)\right] \wedge B$$
Advection
Diffusion

- Equation of continuity

 $\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho V) = 0$

- Induction equation for magnetic field

 $\partial_t \boldsymbol{B} - \boldsymbol{\nabla} \wedge (\boldsymbol{V} \wedge \boldsymbol{B}) = -\boldsymbol{\nabla} \wedge (\|\boldsymbol{\eta}\| \otimes \boldsymbol{\nabla} \wedge \boldsymbol{B})$

- Equation for the transport of heat

$$\rho T \left[\partial_t S + V \cdot \nabla S\right] = \nabla \cdot (\chi \nabla T) + \rho \epsilon - \nabla \cdot F + \mathcal{J}(B)$$

(+Poisson equation and the transport equation for chemicals)

Hydrostatic and thermal equilibrium hypothesis → equations for standard stellar evolution codes

The angular momentum transport: an advective process

Evolution of the angular velocity of a 20 M_{\odot} star taking a flat profile as inital condition *Meynet & Maeder, 2000*

Advection could not be treated as a diffusion

A multi-scales problem in time and space

Modelling of rotational transport

Vector fields are expanded in vectorial spherical harmonics (Rieutord 1987):

$$\begin{split} u\left(r,\theta,\varphi,t\right) &= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} u_{m}^{l}\left(r,t\right) \boldsymbol{R}_{l}^{m}\left(\theta,\varphi\right) + v_{m}^{l}\left(r,t\right) \boldsymbol{S}_{l}^{m}\left(\theta,\varphi\right) + w_{m}^{l}\left(r,t\right) \boldsymbol{T}_{l}^{m}\left(\theta,\varphi\right) \\ \hline \boldsymbol{Poloidal \ part} \quad \boldsymbol{Toroidal \ part} \quad \boldsymbol{Toroidal \ part} \quad \boldsymbol{\nabla}_{S} &= \widehat{\boldsymbol{e}}_{\theta} \partial_{\theta} + \widehat{\boldsymbol{e}}_{\varphi} \frac{1}{\sin \theta} \partial_{\varphi} \end{split}$$

Allows to separate variables in transport equations — modal equations in r and t only

Preliminary definitions

- Internal macroscopic velocity field:

 $V = r \sin \theta \Omega (r, \theta) \widehat{\mathbf{e}}_{\varphi} + \hat{r} \widehat{\mathbf{e}}_{r} + \mathcal{U}_{M}(r, \theta) + u(r, \theta, \varphi, t)$

Transport equations system

Thermal wind equation (baroclinic equation):

$$\varphi \Lambda_l - \delta \Psi_l = \frac{r}{\overline{g}} \mathcal{D}_l \left(\Omega, \boldsymbol{B} \right)$$

Transport with gravito-inertial waves

We consider a 'shellular' rotation:

We get:

$$4\pi r^{2} \mathcal{F}_{J}(r) = \sum_{\substack{n \in \mathbb{Z} \\ \text{Spectrum excited by convection}}} \left\{ 4\pi r_{c}^{2} \mathcal{F}_{J}(k, m, \sigma; r_{c}) \exp\left[-\tau_{k,m}\left(r, \delta\overline{\Omega}\left(r\right); \nu\right)\right] \right\}$$

$$= \sum_{\substack{n \in \mathbb{Z} \\ \text{Spectrum excited by convection}}} \left\{ 4\pi r_{c}^{2} \mathcal{F}_{J}(k, m, \sigma; r_{c}) \exp\left[-\tau_{k,m}\left(r, \delta\overline{\Omega}\left(r\right); \nu\right)\right] \right\}$$

$$= \sum_{\substack{n \in \mathbb{Z} \\ \text{Spectrum excited by convection}}} \left\{ 4\pi r_{c}^{2} \mathcal{F}_{J}(k, m, \sigma; r_{c}) \exp\left[-\tau_{k,m}\left(r, \delta\overline{\Omega}\left(r\right); \nu\right)\right] \right\}$$

$$= \sum_{\substack{n \in \mathbb{Z} \\ \text{Spectrum excited by convection}}} \left\{ 4\pi r_{c}^{2} \mathcal{F}_{J}(k, m, \sigma; r_{c}) \exp\left[-\tau_{k,m}\left(r, \delta\overline{\Omega}\left(r\right); \nu\right)\right] \right\}$$

$$= \sum_{\substack{n \in \mathbb{Z} \\ \text{Spectrum excited by convection}}} \left\{ 4\pi r_{c}^{2} \mathcal{F}_{J}(k, m, \sigma; r_{c}) \exp\left[-\tau_{k,m}\left(r, \delta\overline{\Omega}\left(r\right); \nu\right)\right] \right\}$$

$$= \sum_{\substack{n \in \mathbb{Z} \\ \text{Spectrum excited by convection}}} \left\{ 4\pi r_{c}^{2} \mathcal{F}_{J}(k, m, \sigma; r_{c}) \exp\left[-\tau_{k,m}\left(r, \delta\overline{\Omega}\left(r\right); \nu\right)\right] \right\}$$

where

Numerical simulation of secular transport

Hydrodynamical case with $\Omega(r,\theta)=\Omega(r)$ (I=2); STAREVOL CODE

Decressin, Mathis et al.; en prep.

Diagnosis and identification

-Meridional circulation

$$R_{\odot}^4 F_{\rm MC}(r) = \frac{1}{5} \rho r^4 \overline{\Omega} U_2$$

-Shear induced $R_{\odot}^4 F_{\rm S}(r) = \rho v_{\rm V} r^4 \partial_r \overline{\Omega}$ turbulence

Work is in progress to implement differential rotation in latitude and transport by magnetic field and gravito-inertial waves (crucial to explain the internal rotation profile of the Sun) and the associated diagnosis (IGW: Eggenberger & Mathis)

Hydrodynamical (& MHD) vision of stellar evolution ready for helio and asteroseismic predictions and diagnosis

Type I Rotational Transport

The same processes (circulation and turbulence) are responsible for the transport of angular momentum and the mixing of chemicals Successes:

-properties of massive stars (correct prediction of surface abundances and of population ratio (blue and red SG); Meynet 2004 and references therein)

-Li abundance on blue side of Li gap (Talon & Charbonnel 1998)

-peculiar abundances of subgiants (Palacios et al. 2003, Palacios et al. 2004)

Weaknesses: for late type stars, predicts

-fast rotating core

≠ helioseismology (Pinsonneault et al. 1989; Chaboyer et al. 1995; Matias & Zahn 1997)

-strong destruction destruction of ⁹Be in Sun ≠Balachandran & Bell 1998; may be explained by tachocline mixing

-mixing correlated with loss of angular momentum
 ≠ Li in tidally locked binaries (Balachandran 2002)
 ≠ little dispersion in the Spite plateau

Another process is responsible for the transport of angular momentum

Type I Rotational Transport

Type II Rotational Transport

Circulation and turbulence are responsible for the mixing of chemicals;

Another process operates for the transport of angular momentum; has indirect impact on mixing, by shaping the rotation profile

Magnetic field ?

Internal Gravity Waves ?

Magnetic field in radiative zones

-Does it prevent the spread of tachocline? -Does it enforce uniform rotation?

> Convection Zone Dynamo field

> > Tachocline

Radiation Zone Fossil field

Gough & McIntyre 1998

Role of the magnetic field in radiation zones

3D solutions Brun & Zahn 2006

Ferraro's law and 3D non-axisymmetric MHD instabilities

At high latitudes poloidal field threads through CZ enforces diff. rotation Ferraro's law

Dynamo field: rapid models of tachocline Forgacs-Dajka 2004

Internal Gravity Waves

a crucial transport process for the evolution of solar-type stars

Asteroseismic effects of rotational transport

Structural changes due to rotational transport — indirect effects on oscillations frequencies

Example: 1.5 M_{\odot} star with V_i = 150 km s⁻¹ (Eggenberger, PhD Thesis)

Asymptotic theory

$$v_{n,l} \approx \left(n + \frac{l}{2} + \varepsilon\right) \Delta v - \frac{l(l+1)}{6} \frac{\delta v_{0,2}}{n}$$

$$\underline{\Delta v} = v_{n,l} - v_{n-1,l} = \left(2 \int_0^R \frac{\mathrm{d}r}{c_s}\right)^{-1}$$

$$\delta v_{l,l+2} = v_{n,l} - v_{n-1,l+2} \approx -(4l+6) \frac{\Delta v}{4\pi^2 v_{n,l}} \int_0^R \frac{\mathrm{d}c_s}{\mathrm{d}r} \frac{\mathrm{d}r}{r}$$

	Without rotation	V _i = 150 km s ⁻¹
Δv	70.40 μHz	69.94 μHz
δv_{02}	5.07 μHz	5.76 μHz
X _c	0.330	0.443

Asteroseismic effect due to a dynamical processes: the case of the horizontal turbulence

Eggenberger, PhD Thesis

Physics included in models:

-Geneva evolution code (Meynet & Maeder 2000, A&A, 361, 101) -microscopic diffusion (Richard et al. 1996, A&A, 312, 1000) -magnetic braking (Kawaler 1988, ApJ, 333, 236)

Asteroseismic analysis:

-Aarhus oscillation code (Christensen-Dalsgaard 1997) -modes $\ell \le 3$

Initial parameters:

-1 M_{\odot} and solar calibration of Y_i , (Z/X)_i, α_{MLT} et K

 $-V_i = 0, 10, 30 \text{ et } 100 \text{ km s}^{-1}$

-3 prescriptions for the horizontal turbulence:

D_h Zahn (1992), Maeder (2003) et Mathis et al. (2004)

Asteroseismic effect due to a dynamical processes: the case of the horizontal turbulence

Eggenberger, PhD Thesis

 New prescriptions for the horizontal transport increase transport and mixing and thus the rotational effects on frequencies

What should be done

Major impact on:

Excitation of gravity (gravito-inertial) waves

Numerical simulations of penetrative convection

Spectrum and flux of the excited waves Kiraga et al. 2003-2005, Dintrans 2005, Rogers & Glatzmaier 2005-2006

Numerical and semi-analytical treatment of the excitation of gravito-inertial waves

(A.-S. Brun, S. Mathis, J.-P. Zahn; S. Mathis, K. Belkacem, R. Samadi, M.-J. Goupil)

Analytical treatment

Goldreich, Murray & Kumar 1994 used by Talon & Charbonnel 2003-2004-2005

Context

-Astero and helioseismology spatial missions (COROT, MOST; GOLF- (ESPADONS, HARPS, VLT ...) NG (DYNAMICS), SOHO)

- -Physics instruments (LIL, LMJ, ITER)
- Laboratory experiments relevant for astrophysical plasmas

-Numerical simulation of stellar (magneto-)hydrodynamics (ASH, ESTER)

