Report on Task 2

A. Moya

Instituto de Astrofísica de Andalucía, CSIC, Granada, Spain

Introduction (Codes involved and procedure)
 Frequency comparison
 Additional studies
 Conclusions and further work

Frequency comparison

Direct comparison

Frequency comparison

Direct comparison

Frequency comparison

Direct comparison

Frequency comparisonDirect comparison $\ell = 2$ central spectrum

Frequency comparisonDirect comparison $\ell = 2$ g-modes

Large separation $\ell = 0$

Large separation $\ell = 2$

Large separation

Large separation

l =2

Large separation $\ell = 2$

Asymptotic properties comparison Small over large separation

Asymptotic properties comparison g-mode period separation

Asymptotic properties comparison g-mode period separation

Additional studies Richardson extrapolation

Richardson extrapolation

LAWE

$\ell = 0$ in NRE

Example about Richardson extrapolation:

	LOC	Graco	GraCo
		no RI	with RI
Frequency	2922.45	2925.30	2921.25
ℓ=0,n=23			

f(FILOU)=2924.87 μHz f(NOC)=2926.8 μHz f(ADIPLS)=2922.6471 μHz f(POSC)=2923.2584 μHz

Porto 22/11/2006

Report on Task 2, A. Moya Porto 22/11/2006

f(POSC)=254.051 μHz

f(ADIPLS)=254.0438 μHz

f(NOC)=254.05 μHz

f(LOC)=254.0304 μHz

	Graco	Graco	GraCo
	G=6.673·10 ⁻⁸	G=6.67232·10 ⁻⁸	G=6.671682·10 ⁻⁸
Frequency	254.0617	254.0482	254.0356
HO	μHz	μHz	μHz

Example about constant G:

	Groups with similar behaviors		
Frequencies	NOC-ADIPLS- OSCROX (linear)- GraCo	POSC-LOC- OSCROX (cubic)- PULSE	Rest of codes different
Large separation L=0	NOC-ADIPLS- OSCROX (linear)- GraCo	POSC-LOC- OSCROX (cubic)- PULSE	Rest of codes different
g-mode period separation	PULSE	LOC	Rest of codes together
Small separation L=0-2	ADIPLS-OSCROX (linear)	GraCo-POSC- OSCROX (cubic)	FILOU-NOC
Small separation L=1-3	OSCROX (lin)- POSC	GraCo-FILOU- NOC	LOC- Franec

Conclusions and further work

- 1. Differences located in the high frequencies, avoided crossings, and g-mode trapping.
- 2. In every comparison there are more than one code presenting differences larger than COROT accuracy.
 - 3. For 2000 mesh points Richardson extrapolation does not significantly change differences between codes using the same integration order. But improves accuracy when compare with higher order resolutions.
- 4. Study other HR diagram positions as β Ceph. or SPB stars to test with other stellar structures.
- 5. Fix constants, number of mesh points and system of equations.
 6. More information and contributions in: http://www.astro.up.pt/corot/compfreqs/task2.html

Work to do:

1. Define the optimum number of mesh points and its distribution

2. How to obtain this mesh (interpolation a posteriori or given by the equilibrium codes)

3. Study different sets of eigenfunctions

4. Comparison of the eigenfunctions

5. Asteroseismological test of the equilibrium codes