Diffusion and helioseismology

Jørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet & Danish AsteroSeismology Centre (DASC)

Eddington (1926): 'The internal constitution of the stars'

- '[T]he heavy elements fall to the centre and the lighter elements rise to the surface' (p. 275)
- 'Radiation pressure greatly modifies these results since it has different effects on different ions' (p. 275)
- 'It would be difficult to reconcile these results with the observed spectra at the surfaces of the stars [is] the approach to this steady state sufficiently rapid to effect appreciable separation in the life-time of a star or to overcome the mixing tendencies which may be retarding it[?]? (p. 276)

Effects on solar models

Noerdlinger (1977; A&A 57, 407)

- 0: no diffusion
- 1: normal rate
- 5: 5 times normal

Model sequence	Dif- fusion	α	Y ₀	Y _s	Y _c	<i>T</i> _c in 10 ⁶ K
A	0	1.64	26.99%	26.99%	61.69%	16.02
В	1	1.75	26.79%	25.63%	62.65%	16.12
С	3	1.96	26.39%	23.38%	65.12%	16.33

- 0: no diffusion
- 1: normal rate
- 3: 3 times normal

Wambsganns (1988; A&A 205, 125)

Detailed effects

No strong effect on oscillation frequencies

Cox et al. (1989; ApJ 342, 1187)

Helioseismic consequences

Only He diffusion

 Differential asymptotic inversion

Christensen-Dalsgaard et al. (1993; ApJ 403, L75)

Treatment of diffusion and settling

$$\begin{aligned} \frac{\partial X_i}{\partial t} &= \mathcal{R}_i + \frac{1}{\rho r^2} \frac{\partial}{\partial r} (r^2 \rho V_i) \\ \frac{\partial X_i}{\partial t} &= \mathcal{R}_i + \\ \frac{1}{\rho r^2} \frac{\partial}{\partial r} \left[r^2 \rho \left(D_i \frac{\partial X_i}{\partial r} + V_i^{(s,1)} X_i + V_i^{(s,2)} V_H X X_i \right) \right] \end{aligned}$$

Michaud & Proffitt approximation

$$v_{H} = -\frac{B T^{5/2}}{\rho \ln \Lambda_{ij}(0.7+0.3X)} \left[\left(\frac{5}{4} + 1.125\nabla\right)(1-X)\frac{d\ln P}{dr} \right] + \frac{(17)}{(1+X)(3+5X)} \left[\frac{d\ln X}{dr} \right] + \frac{(17)}{(1+X)(3+5X)} \left[\frac{d\ln$$

1993: ASP Conf. Ser. 40, p. 246

Comparison with Burgers (1969)

Comparison with Burgers (1969)

Thoul et al. (1994; ApJ 421, 828)

Comparison with Burgers (1969)

Thoul et al. (1994; ApJ 421, 828)

Further issues in diffusion computation

- Different elements move at different rates
- Effects of partial ionization
- Radiative effects

Note that change in relative composition of heavy elements should in principle be taken into account in the opacity calculation

Difference between elements

Relative to oxygen

Radiative effects on surface abundance

∃ No radiation, as fully ion. Fe

Radiation, part. ion.No radiation, part. ion.

Turcotte et al. (1998; ApJ 504, 539)

Effects on solar composition

ASTEC calculation, all heavy elements behave as fully ionized ¹⁸O

Effects on solar composition

ASTEC calculation, all heavy elements behave as fully ionized ¹⁸O

Comparison with helioseismic sound speed

Revision of solar abundances

Nicolas Grevesse

Asplund et al. (2004; A&A 417, 751. 2005; astro-ph/0410214 v2):

 $N(O)/N(H)|_{old} = 8.5 \times 10^{-4}$, $Z_{old} = 0.0193$ $N(O)/N(H)|_{new} = 4.6 \times 10^{-4}$, $Z_{new} = 0.0122$

Improvements:

- •Non-LTE analysis
- •3D atmosphere models

•Consistent abundance determinations for a variety of indicators

Effect on helioseismology: a grain of sand or a rock?

Grevesse (Sheffield, 2006) Sun - Model S

Effect on helioseismology: a grain of sand or a rock?

Effect on helioseismology: a grain of sand or a rock?

Possible solutions

Joyce Guzik

- Can neon and argon help?
- The neon abundance cannot be determined in the photosphere
- Neon has a substantial effect on the opacity

See also Bahcall et al. (2005; ApJ 631, 1281)

Possible solutions

Possible solutions

Diffusion still helps!

Noted by Bahcall et al. (2001; ApJ 555,990)

 $\nabla_{\mathsf{rad}} \propto \kappa \propto Z(1+X)$

 α Cen A models

AND NOW THESE MESSAGES

Asteroseismology with Kepler

Kepler MISSION CONCEPT

Kepler

- Is NASA's first mission capable of finding Earth-size and smaller planets.
- Is a photometric space based mission designed specifically for finding habitable planets (0.5 to 10 M_e) in and near the habitable zone of solar-like stars.
- Uses a one-meter Schmidt telescope with a FOV >100 deg² using an array of 42 CCD.
- Will be launched into a heliocentric orbit for continuous viewing.
- Launch expected in November 2008.

Kepler field

PHOTOMETRIC CHARACTERISTICS

- Differential photometric precision of 6.6 ppm for 6.5 hour integration (Includes instrument noise, stray light, background stars, etc.)
 (Photon shot noise in 6.5 hours for R=12 star is an additional 16 ppm)
- Continuously observe a single FOV for 4-6 years, except for ≤1 day every month Need to body point monthly to download data
 Need to rotate the spacecraft 90 deg every 3 months to keep the Sun on the solar arrays and the CCD radiator pointed to deep space
- Simultaneously observe >100 000 main-sequence stars Start with 170 000 stars and downselect to 100 000 after about 3 years
- Time resolution

30 minutes for most stars1 minute time resolution for subset 512 objects

- Bandpass 430 to 890 nm (50%) to avoid Ca II H& K and fringing in red
- Point spread function FWHM about 6 arc sec (one pixel is 3.98 arc sec)

Goals of Kepler asteroseismology

- to provide support for the studies of extrasolar planetary systems by characterizing the central stars of the systems
- to perform in-depth asteroseismic investigations of a large number of stars, predominantly but not exclusively those showing solar-like oscillations.

Asteroseismology with Kepler

- 512 star at any given time with 1-min cadence (can change selection every three months, if desirable)
- Fixed 105 sq. degree field in Cygnus, 4 6+ year mission
- Excellent asteroseismic data at magnitude 9 11. Some information (radius, evolutionary state) for fainter stars
- 100 000 stars with 30 min cadence. Excellent for giant pulsators, some main-sequence heatengine pulsators.

Required activities

- Selection of asteroseismic targets
- Characterization of asteroseismic targets
- Development and verification of data analysis pipeline
- Development and verification of data interpretation pipeline
- Developing stellar modelling techniques

BUT THIS IS NOT ALL

Stellar noise vs. oscillations

SONG: the Stellar Oscillations Network Group

http://astro.phys.au.dk/SONG

Coming soon: first newsletter, registration for Science Consortium

Concept

- Around 1 m telescopes
- Very stable spectrograph, iodine cell
- 6 8 stations with suitable geographical distribution
- Fully automatic operation
- Using existing observatory sites with required infrastructure

Possible site layout

Possible distribution of sites

Predicted performance

Gains with SONG: mode selection

