The effects of stellar rotation and magnetism on oscillation frequencies

Daniel Reese

Joint HELAS and CoRoT/ESTA Workshop 20-23 November 2006, CAUP, Porto - Portugal

Introduction

- **X** traditionally, stellar pulsations are calculated assuming spherical symmetry
- $\pmb{\times}$ however, neither stellar rotation nor stellar magnetism respect this symmetry
- X Oscillation modes are no longer described by a single spherical harmonic
- \bigstar No longer 1D calculations, but 2D or 3D

- 1. The effects of stellar rotation
- 2. The effects of stellar magnetism
- 3. Conclusion

Incidence of stellar rotation

A few statistics :

3/28

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

Targets for space missions

Identification	Name	Туре	$v \cdot \sin i$ (in km $\cdot s^{-1}$)	Mission
HD 187642	Altair	δ Scuti	230	WIRE
HD 149757	$\zeta \; Oph$	ζ Oph	380	MOST
HD 181555		δ Scuti	170	CoRoT
HD 49434		γ Doradus	90	CoRoT
HD 171834		γ Doradus	72	CoRoT
HD 170782		δ Scuti	198	CoRoT
HD 170699		δ Scuti	> 200	CoRoT
HD 177206		δ Scuti	> 200	CoRoT

Effects of rotation

- $\pmb{\mathsf{X}}$ Two forces appear because of rotation
 - centrifugal force : stellar deformation and modification of equilibrium quantities
 - Coriolis force : intervenes in all dynamical processes

Models of rapidly rotating stars

- A few references :
- ★ Meynet and Maeder (1997-2000)
- **X** Roxburgh (2004, 2006)
- ✗ Jackson et al. (2005), MacGregor et al. (2006)
- ★ ESTER (Rieutord et al., 2005, Rieutord, 2006)

 $M=2M_{\odot}$ $\Omega=2.2\times10^{-4}s^{-1}$ $R_{e}=1.95R_{\odot}$ $L=15.9L_{\odot}$

 $R_{e}/R_{p}=1.23$ $V_{e}=299$ km/s $\Omega^{2}R_{e}^{3}/GM=0.456$

Roxburgh (2004)

Rotation and oscillations

Two basic approaches to take the effects of rotation into account :

Perturbative approach

- $\pmb{\mathsf{X}}$ the rotation rate Ω is considered to be small
- $\pmb{\mathsf{X}}$ equilibrium model and oscillation modes :

$$\vec{v} = \vec{v}_0 + \vec{v}_1 \Omega + \vec{v}_2 \Omega^2 + \dots \mathcal{O} \left(\Omega^{n+1} \right)$$
$$\omega = \omega_0 + \omega_1 \Omega + \omega_2 \Omega^2 + \dots \mathcal{O} \left(\Omega^{n+1} \right)$$

Complete approach

- $\pmb{\mathsf{X}}$ the rotation rate Ω is not considered small
- ★ equilibrium model and oscillation modes = a solution to a 2D problem which fully includes the effects of rotation

7/28

A few references...

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

Perturbative approach

- \checkmark 2nd order methods :
 - Saio (1981)
 - Gough & Thompson (1990)
 - Dziembowski & Goode (1992)
- X 3rd order methods :
 - Soufi et al. (1998)
 - Karami et al. (2005)

Complete approach

- **X** Clement (1981-1998)
- ✗ Dintrans et al. (1999), Dintrans & Rieutord (2000)
- ★ Espinosa et al. (2004)
- ✗ Lignières et al. (2006), Reese et al. (2006)

Slow rotation rates

Perturbative expression of pulsation frequencies :

$$\omega = \omega_0 - m(1 - C)\Omega + \left(D_1 + D_2 m^2\right)\Omega^2 + m\left(T_1 + T_2 m^2\right)\Omega^3 + \mathcal{O}\left(\Omega^4\right)$$

No rotation

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

Slow rotation rates

Perturbative expression of pulsation frequencies :

$$\omega = \omega_0 - m(1 - C)\Omega + \left(D_1 + D_2 m^2\right)\Omega^2 + m\left(T_1 + T_2 m^2\right)\Omega^3 + \mathcal{O}\left(\Omega^4\right)$$

Slow rotation rates

Perturbative expression of pulsation frequencies :

$$\omega = \omega_0 - m(1 - C)\Omega + \left(D_1 + D_2 m^2\right)\Omega^2 + m\left(T_1 + T_2 m^2\right)\Omega^3 + \mathcal{O}\left(\Omega^4\right)$$

Solar rotation profile

- X use of 1^{st} order methods
- **X** inversion techniques

Schou et al. (1998), Thompson et al. (2003)

High rotation rates

A multiplet :

High rotation rates

High rotation rates

Validity domain for 150 days of observation $(\Delta \omega = 0.08 \ \mu {\rm Hz})$

- 1st order
- 2nd order
- 3rd order

(see Reese et al., 2006)

Organisation of frequency spectrum

$$f_{n\,\ell\,m} = f_{n\,\ell\,m}^0 + f_{n\,\ell\,m}^1 \Omega + f_{n\,\ell\,m}^2 \Omega^2 + f_{n\,\ell\,m}^3 \Omega^3 + \mathcal{O}(\Omega^4)$$

14/28

$$\checkmark$$
 First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

Organisation of frequency spectrum

$$f_{n\,\ell\,m} \simeq \Delta_n n + \Delta_\ell \ell + \Delta_m |m| + \alpha^{\pm}$$

(see Lignières et al., 2006, and Reese, 2006)

14/28

Avoided crossings

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

15/28

Mode identification

$$n = ? \quad \ell = ?$$

- 1. The effects of stellar rotation
- 2. The effects of stellar magnetism
- 3. Conclusion

- ✗ Discovered by Kurtz in 1978
- **X** Characteristics :
 - peculiar chemical composition,
 - strong dipolar magnetic field,
- $\pmb{\mathsf{X}}$ Pulsation modes :
 - luminosity variations with periods ranging from 5 to 15 min.
 - well described by the oblique pulsator model (e.g. Kurtz, 1990)

Magnetism and oscillations

A few references :

- ✗ Roberts & Soward (1983), Campbell & Papaloizou (1986)
- ✗ Dziembowski & Goode (1996), Bigot et al. (2000), Bigot & Dziembowski (2002)

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

- **X** Cunha & Gough (2000), Cunha (2006)
- ✗ Balmforth et al. (2001), Théado et al. (2005)
- ✗ Rincon & Rieutord (2003), Reese et al. (2004)
- X Saio & Gautschy (2004), Saio (2005)

Effects of magnetism :

- $\pmb{\mathsf{X}}$ suppression of convection near magnetic poles \rightarrow diffusion
- **✗** cyclic behaviour of frequency shifts
- **X** self-similar structure in frequency spectrum
- **X** magnetic shear layers
- **X** magnetic oscillations and different frequency spectrum structure

Magnetism, convection and diffusion

Balmforth et al. (2001) :

- ✗ convection suppressed in polar regions due to vertical B
- **X** chemical diffusion in polar regions
- **X** enable κ mechanism in the hydrogen ionisation zone operating in polar regions

Trapping of magnetic waves

- **X** coupling of acoustic and magnetic waves in outer region, and decoupling below $v_A \approx c$
- ✗ dissipation of slow magnetic waves below
- **X** high damping rate when wave has an antinode near $v_A \approx c$
- **X** low damping rate when wave has a node near $v_A \approx c$

Saio & Gautschy (2004), see also Cunha & Gough (2000)

Self similarity of frequency shifts

$$\Delta \omega = f(\omega_0 B_p^\alpha)$$

(*e.g.* Cunha & Gough, 2000, Saio & Gautschy, 2004)

 $\alpha = 1/(1+N)$ for polytropes

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

22/28

Axis of pulsation

Bigot & Dziembowski (2002) predict that the pulsation axis is located somewhere between the magnetic axis and the rotation axis.

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

Magnetic shear layers

- **✗** include viscosity and/or magnetic diffusivity
- **✗** magnetic shear layers
- **X** may intervene in mode selection

(Rincon & Rieutord, 2003)

Alfvén waves

- **✗** different frequency spectrum
- **X** different structure to pulsation modes
- **X** certain types become singular in the ideal (inviscid) limit

Latitudinal structure and quantification

q=1

0.3

0.3

- 1. The effects of stellar rotation
- 2. The effects of stellar magnetism
- 3. Conclusion

- **X** stellar rotation and magnetism introduce many new phenomena
- **X** increased difficulty for calculating pulsation modes
- ✗ need for powerful numerical and theoretical methods in order to interpret observed pulsations
- $\pmb{\mathsf{X}}$ exciting prospects for stellar physics

29/28

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

29/28

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

29/28

0___8

-6

-4

τ

-2

0

29/28

30/28

30/28

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

30/28

0 ∟ -8

-6

-4

τ

-2

0

30/28

Effects of viscosity and magnetic diffusivity

Empirical law (for $E = E_m$) :

 $\begin{array}{lll} {\rm position} & \propto & E^{1/4} \\ {\rm thickness} & \propto & E^{1/4} \end{array}$

31/28

Asymptotic formulas

• Analytical solutions for small diffusivities :

$$E = K\varepsilon, \quad E_{\rm m} = K_{\rm m}\varepsilon, \quad \varepsilon \to 0$$

• Form of solutions :

$$b(r,\nu) = b_n(r)f_{n,q}(\varepsilon^{-1/4}\nu) + \mathcal{O}(\varepsilon^{1/2})$$

$$v(r,\nu) = v_n(r)f_{n,q}(\varepsilon^{-1/4}\nu) + \mathcal{O}(\varepsilon^{1/2})$$

$$\lambda_{n,q} = \lambda_n^0 + \varepsilon^{1/2}\lambda_{n,q}^1 + \mathcal{O}(\varepsilon)$$

- Zeroth order : radial structure (b_n, v_n) and mode quantification (n)
- Next order : latitudinal structure $(f_{n,q})$ and mode quantification (q)- use of adjoint system to obtain $f_{n,q}$

Non-axisymmetric modes

• poloidal and toroidal components are now coupled

Comparison with axisymmetric modes

m = 1

Comparison with axisymmetric modes

35/28

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

- Toroidal modes : singular
- Non-axisymmetric modes : poloidal or toroidal characteristics
- Prospects
 - study of magneto-acoustic waves
 - study of magneto-inertial waves
 - understanding/constraining the interior of planets such as Jupiter

Asymptotic developments

• Change of variables $(r, \nu = \frac{\sin \theta}{\sqrt{r}}, \varphi)$ • Scale change $\mathsf{E}^{1/4} = (K \varepsilon)^{1/4}$ and $\mathsf{E}_{\mathrm{m}}^{1/4} = (K_{\mathrm{m}} \varepsilon)^{1/4}$ where $\varepsilon \to 0$

$$\lambda b = \left(1 - \frac{1}{2}\varepsilon^{1/2}r\hat{\nu}^2\right) \left[\frac{1}{r^3}\frac{\partial v}{\partial r} - \frac{3v}{2r^4}\right] + \frac{\varepsilon^{1/2}K_{\rm m}}{r^3}\Theta[b]$$
$$\lambda v = \left(1 - \frac{1}{2}\varepsilon^{1/2}r\hat{\nu}^2\right) \left[\frac{1}{r^3}\frac{\partial b}{\partial r} + \frac{3b}{2r^4}\right] + \frac{\varepsilon^{1/2}K}{r^3}\Theta[v]$$

 \checkmark First \checkmark Last \checkmark Page \checkmark Full Screen \checkmark Close

where $\Theta[b] = \frac{\partial^2 b}{\partial \hat{\nu}^2} + \frac{1}{\hat{\nu}} \frac{\partial b}{\partial \hat{\nu}} - \frac{b}{\hat{\nu}^2}$

Asymptotic developments

• at zeroth order, we have :

$$\begin{split} \lambda^{0}b &= \frac{1}{r^{3}}\frac{\partial v}{\partial r} - \frac{3}{2r^{4}}v, \\ \lambda^{0}v &= \frac{1}{r^{3}}\frac{\partial b}{\partial r} + \frac{3}{2r^{4}}b, \\ v(\eta) &= 0, \quad b(1) = 0. \end{split} \Rightarrow \begin{cases} b(r,\nu) &= b_{n}(r)f(\hat{\nu}) + \mathcal{O}(\varepsilon^{1/2}) \\ v(r,\nu) &= v_{n}(r)f(\hat{\nu}) + \mathcal{O}(\varepsilon^{1/2}) \\ \lambda &= \lambda_{n}^{0} + \mathcal{O}(\varepsilon^{1/2}) \end{cases}$$

• at next order, we get :

$$\begin{split} \lambda_n^0 b^1 &- \frac{1}{r^3} \frac{\partial v^1}{\partial r} + \frac{3v^1}{2r^4} &= -\lambda^1 b_n^0 f - \frac{\lambda_n^0 r \hat{\nu}^2 b_n^0 f}{2} + \frac{b_n^0 \Theta[f]}{r^3}, \\ \lambda_n^0 v^1 &- \frac{1}{r^3} \frac{\partial b^1}{\partial r} - \frac{3b^1}{2r^4} &= -\lambda^1 v_n^0 f - \frac{\lambda_n^0 r \hat{\nu}^2 v_n^0 f}{2} + \frac{v_n^0 \Theta[f]}{r^3}, \\ b^1 (r = 1, \hat{\nu}) &= 0, \quad v^1 (r = \eta, \hat{\nu}) = 0. \end{split}$$

This is of the form $\mathcal{L}_0\Psi_1=\mathcal{L}_1\Psi_0$: solution of adjoint problem

$$\Rightarrow \begin{cases} f(\hat{\nu}) &= f_{n,q}(\hat{\nu}) \\ \lambda &= \lambda_n^0 + \varepsilon^{1/2} \lambda_n^1 + \mathcal{O}(\varepsilon^{1/2}) \end{cases}$$

38/28