CHAPTER 6

HEATING OF THE UPPER ATMOSPHERE

6.1. Introduction

It was Biermann (1946) and Schwarzschild (1948) who first suggested the heating
of the upper atmosphere (the chromosphere and corona) by sound waves that are
generated from turbulence in the convection zone and then steepen to form shock
waves as they propagate upwards. Until relatively recently this was universally
accepted but now it is thought to be important only for the low chromosphere. This
chapter first gives a summary of some energy-balance models that have been pro-
posed for the upper atmosphere (assuming a simple form for the heating), and then
it proceeds to discuss the processes that may produce the heating. Qualitatively, it is
:::]ear that a source of heat is needed to balance not only the energy radiated away
in thf: chromosphere but also the energy removed by conduction from the temperature
maximum. Quantitatively, however, it is still uncertain how the heating varies with
altitude, and the detailed nature of the heating mechanism is highly controversial,
It is also probable that the heating mechanism in the outer corona is collisionless
and so beyond the scope of this book.

According to Withbroe and Noyes (1977), in the chromosphere the heating needed
to balance radiation is about 4 x 10° W m~2 for quiet regions or coronal holes and
2 x 10* Wm~™? for active regions. In the corona, the required energy input drops
toonly 3 x 10> W m ™2 for quiet regions and 5 x 10° W m~ 2 for active regions. Down
at the photosphere, an enormous input of wave flux of between 10* and 10 W m -2
is believed to exist (1 Wm ™2 = 10* ergem ™2 s~ '), but it is not clear how much of this
reaches higher levels.

Indirect observational support for the classical picture of atmospheric heating
by acoustic waves had come from spectral line profiles; these are broadened by the
presence of nonthermal velocities that increase with height from a few kms~! in the
low chromosphere to 25 to 30kms™! in the transition region and 10 to 30 km s ™!
in the corona. The nonthermal broadening was thought possibly due to waves
that_were propagating upwards rather than remaining stationary. Indeed, oscillatory
motions with a period of 300 s or shorter had been observed through the photosphere
and chromosphere up to the low transition region (but not in the corona). Further-
more, the observations by Deubner (1976) suggested the presence near the temperature
minimum of an energy flux of at most 10° to 10¢ W m~? carried by waves with
periods 10 to 300s. Even though this wave flux is radiatively damped in the photo-
sphere, only a small fraction needed to propagate upwards to supply enough energy
to heat the chromosphere and corona.

More recently, direct evidence from OSO 8 that only the low chromosphere may be
heated by acoustic waves has been presented by Athay and White (1977). Mein et al.
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(1980) and Mein and Schmieder (1981) have summarised other observations. At the
temperature minimum a 5-min wave-train is observed, with possibly enough energy
to heat the low chromosphere; but, by the time the upper chromosphere is reached,
its flux has been reduced and its coherence destroyed (Section 6.3.2). Heating of the
upper chromosphere and corona is therefore probably magnetic in nature (Section 6.4).
Magnetic waves present difficulties because they are both scattered off inhomo-
geneities and refracted as the Alfvén speed increases with altitude; but, provided
enough wave-flux can reach the corona, short-period ( =~ 10s) Alfvén waves appear
to be a viable heating mechanism for most coronal loops (Section 6.4.2), where the
magnetic field is less than about 20 G. However, they are difficult to dissipate in
stronger magnetic field regions, such as X-ray bright points and active-region cores.
An alternative heating mechanism that does work in a strong field is magnetic dis-
sipation in current sheets or filaments (Section 6.4.4). Here the energy is transferred
to the corona by motions of such a low frequency that the magnetic field evolves
through a series of quasi-static configurations. In the corona the energy then dissipates
ohmically in the classical way that has long been proposed for solar flares. A continu-
ous occurrence of such ‘mini-flares’ is proposed as the means by which the corona
is heated generally; but a detailed analysis of the process remains to be carried out.

6.2. Models for Atmospheric Structure

6.2.1. BAsiC MODEL

The temperature increases dramatically from the chromosphere up through the
narrow transition region to the corona, in a manner that is shown schematically in
Figure 6.1. The gradient of the temperature increases from small values in the chromo-
sphere to extremely large values in the transition region and then decreases to zero
at the temperature maximum. The inflexion point in the temperature profile corres-
ponds to the place of maximum temperature gradient and is located typically near
the base of the transition region (& 2 x 10* K), whereas the inflexion point in the
profile of T2 (at T,) gives the maximum heat flux and occurs typically at about
10°K.
At each location a thermal equilibrium,

C=H-R, 6.1)
has often been assumed to hold between some kind of heating (H), radiative losses
(— R) and a downwards conductive flux (F, = — k, T%2V T), whose divergence is

the conductive loss (C). Below T,, C is negative, so that conduction deposits heat
and the radiation (R) exceeds heating (H), whereas above T, C is positive and heating
dominates radiation.

When Equation (6.1) holds, the temperature structure is determined by the relative
sizes of R and H and by the response of C in maintaining the thermal balance. In the
chromosphere, R and H are both relatively large, while their difference C is small,
so that the spatial change in temperature gradient is slow. As the temperature rises,
so the radiation (R) increases to a maximum between 10* and 10° K (see Table 2.2);
here R greatly exceeds the heating (H) and is balanced by C. This in turn forces the
temperature gradient to increase to large values in the lower transition region (which
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Fig. 6.1. A sketch of the temperature structure in the upper solar atmosphere, indicating the relative
roles of conduction (C), radiation (R) and heating (H).

is therefore being heated by conduction from above and cooled by radiation). Above
about 10° K the radiation falls dramatically and eventually it reaches equality with
heating. Then, through the upper transition region, the conductive flux F_stays relative-
ly constant and at a high value. In the lower corona R and H have fallen to much
smaller values and heating is balanced mainly by conductive losses, the relatively
small value of C implying slow changes of temperature gradient with height. Above
the temperature maximum of an open magnetic field region, the energy transport
by the solar wind becomes increasingly important and eventually it dominates
conduction of heat outwards.

Thus it can be seen that the cause of the extremely steep rise of temperature in the
lower transition region is the fact that the radiation around 10* to 10° K is so large
that it cannot be supplied by mechanical heating but must be provided by conduction
from above. Furthermore, at greater altitudes the energy that is deposited as heat
cannot be radiated away and so it must be conducted both inwards and outwards
from the temperature maximum.

Typical values for the coronal temperature and transition-region pressure are
given in Table 6.1 (from Withbroe and Noyes, 1977) along with estimates for the
conductive and radiative losses (C and R) per unit area at different levels. The heating
(H) that is required may be obtained by summing the losses (C and R). The energy
necessary to heat the corona is typically only a few percent of that needed down in
the chromosphere, so a comprehensive model of atmospheric heating would have to
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TABLE 6.1.
Energy losses from the upper atmosphere (I Wm™2 = 10° ergcm~ s

Conduction Radiation Temperature Pressure
(Wm™?) (Wm™?) (K) (Nm™?)
Quiet region:
Lower and middle
chromosphere 4 % 10°
Upper chromosphere 3 x 10? 2x10°2
Corona. 2 x 102 10? 11— 1.6 x 10°
Coronal hole:
Lower and middle
chromosphere 4 % 10?
Upper chromosphere 3 x10? T wig?
Corona 6 x 10 10 10%
Active region:
Lower and middle
chromosphere 2 x 10*
Upper chromosphere 2x10° 2x10°!
Corona 10? — 10* 5x 10° 2.5 x 10°

treat the generation, propagation and dissipation of energy through the whole region
to a high degree of accuracy. Table 6.1 also shows the extent to which a coronal
hole region is both cooler and less dense than a normal quiet region of the Sun, while
an active region is both hotter and denser.

A simple numerical model for the upper atmosphere may be computed by assuming
forms for the terms in (6.1). For example, Wragg and Priest (1981b) have adapted
an earlier model of McWhirter et al. (1975). They solve

d SO -
E(KOT T )— mT —H 6.2)
for the temperature profile (T(z)) as a function of height, and use the standard values
for the conduction coefficient (k) (Equation 2.34) and the optically thin radiative-
loss coefficients y and « (Table 2.2). The heating (H) is assumed uniform per unit
volume for simplicity, and Equation (6.2) is coupled with the equation of hydrostatic
equilibrium for a fully-ionised hydrogen plasma, namely

- S 63)

dz
where p = 2n k, T. Three boundary conditions are needed to solve Equations (6.2)
and (6.3), such as the prescription at the base of temperature, temperature gradient
and electron density. The resulting profiles depend on one parameter alone, namely
H, some examples being shown in Figure 6.2(a). It is particularly interesting to
discover how the temperature maximum and the height at which it occurs vary with
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Fig. 6.2. The temperature (T) of a model coronal atmosphere as a function of height s (1 Mm = 10¢ m),

showing the effect of varying: (a) the heating strength H, (b) the flux tube divergence for H = 0.2, (c) a

flow for H = 0.2. The heating H is measured in units of the radiation at a temperature of 10° K and a

density of 5 x 10'* m™>. 4 is the ratio of the loop area at the summit to that at the base. vis the flow speed
in m s~ '( + represents an upflow and — a downflow) (from Wragg and Priest, 1981b).
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H. If these models were linked to a coronal hole model, the rapid fall in temperature
after the temperature maximum would be replaced by a more gradual decline. In
Figures 6.2(b) and 6.2(c) the effects of varying the cross-sectional area and flow speed
are also displayed.

6.2.2. MAGNETIC FIELD EFFECTS

It is clear from eclipse or X-ray pictures of the Sun, such as Figures 1.3(d), 1.4 and
1.15, that coronal structure is dominated by the magnetic field. Regions of open
field show up as dark coronal holes, whereas closed-field regions are seen as bright
coronal loops. The influence of the magnetic field on coronal plasma is threefold.

(i) It exerts aforce. The j x Bforce is able to act inward and so contain plasma with
an enhanced pressure in features such as X -ray bright points, coronal loops and active
regions.

(ii) It stores energy. The energy (B*/(2u) per unit volume) that is stored in the
magnetic field may provide an extra source of heating, either by allowing additional
wave modes (Section 4.3) that eventually dissipate or by being released directly by
ohmic dissipation (j2/c) in regions where electric currents are strong.

(iii) It channels heat. The coefficient of thermal conduction (k) along the field is
much larger than the coefficient (k) across the field, so the magnetic field acts as a
‘blanket’ and thermally insulates the plasma very effectively. Heat is constrained to
flow largely along the field, which means that in the transition region and corona,
where conduction is an important means of energy transport, the temperature and
density are strongly affected by the structure of the magnetic field. This is one reason
why the coronal structures in eclipse and X-ray pictures probably outline the magnetic
field. A discussion of such coronal loops can be found in Section 6.5.

A model has been developed by Gabriel (1976) {from an earlier attempt of Kopp
and Kuperus, 1968) for the atmosphere above a (quiet-region) supergranule cell,
typically 30 000 km in diameter. In the photosphere, magnetic flux is concentrated
at supergranule boundaries by the convective flow and instability (Section 8.7),
but higher up in the atmosphere the flux expands until it has become relatively
uniform at the corona (Figure 6.3). Thus, images formed in transition-region lines
follow the supergranulation pattern, with intensities over supergranule boundaries
about a factor of ten higher than those over cell centres, while at the corona the
pattern has disappeared (Figure 1.14). Gabriel assumes for simplicity that V x B =0,
so that the magnetic field is a potential one. He next assumes the plasma to be in
thermal equilibrium under a balance

d dr :
a}(l\'” A(S)E) =_xﬂ: T Al.)_:

between only conduction and radiation, where A is a flux-tube cross-sectional area
and local heating has been ignored; heat is supposedly deposited at greater heights.
This equation is solved along each field line together with the Equation (6.3) of
hydrostatic equilibrium, subject to the boundary conditions that the density, tem-
perature and conductive flux be the same on each field line in the corona at an altitude
of 30 000 km. A coronal conductive flux of 360 W m~ 2 is found to give closest agree-
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Fig. 63. Magnetic field lines and temperature contours for the atmosphere above a supergranule cell
in a quiet region (after Gabriel, 1976).

ment with observation for the network width, and the resulting isotherms are sketched
in Figure 6.3. By comparison with a plane-parallel model, the effect of the above
flux-tube divergence (through A(s)) is to increase the temperature gradient at transi-
tion-region temperatures and so lower the height at which coronal temperatures are
attained. Furthermore, the observed intensities of optically thin lines may be used
to derive the differential emission measure (n? T dh/d T) as a function of temperature.
At temperatures between 103-2 and 10%-2 K, agreement with this emission measure
is much better for Gabriel's model than for McWhirter et al. (1975)'s previous
spherically symmetric models. Below 10°-2 K there is a need to include heating of
amount 2 x 10> Wm~2,

Gabriel’s model has recently been extended by Athay (1981b), who includes
gravitational energy and enthalpy flux but no mechanical heating. With a downflow
he obtains good agreement with observations for 3 x 10° K < T<10°K, and so
concludes that there is no need for mechanical heating. In future, there is a need to
calculate a wider range of models and to couple the energy balance with a magneto-
static force-balance, since the plasma beta is probably of order unity.

6.2.3. ADDITIONAL EFFECTS

Several effects may seriously modify the energy balance in the upper solar atmosphere
but they are normally omitted from the models. For example, the waves that may be
propagating up from below and heating the atmosphere exert a turbulent pressure,
{pv?), which is just the time-average over a wave period of the momentum flux
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(pr?). This wave pressure may well exceed the plasma pressure, and so it needs to be
included in calculating the overall hydrostatic equilibrium. It may even overcome
gravity and cause the plasma to flow outwards.

Most models of the thermal energy balance assume a static plasma and give a
transition-region thickness of only 10 km or so, but in practice the region is probably
in a dynamic state, with an effective thickness of a few thousand km. For example,
material is continually ejected upwards as spicules from the chromosphere at super-
granule boundaries, and persistent downflows of hotter plasma at 5 to 100kms™!
are observed over supergranule boundaries, sunspots and plages. (It may even be the
case that spicules are not just superimposed on a static atmosphere, but rather that
essentially all of the transition-region emission is from the hot surroundings of
spicules.) As cool spicular material moves upwards, it is heated and so extracts
energy from its surroundings; when it falls back down, it carries thermal energy with
it. Typically, one finds a downward mass flux at 10° K over supergranule boundaries
of 5 x 10 m~2s ! for adensity of 5 x 10! m~ 2 and a speed of 10 km s~ !. Pneuman
and Kopp (1978) estimate that the heat carried down by such motions can exceed
the heat transport by conduction, and so they construct a transition-region model
based on a balance between heat downflow and radiation. The effect of a downflux
(q) on the model of Wragg and Priest (1981b) can be seen in Figure 6.2(c), for which
the term d/dz(5k Tq) has been added to the right-hand side of Equation (6.2).

6.3. Acoustic Wave Heating

Acoustic waves are believed to be generated near the photosphere (Section 4.9.3)
and to steepen into shock waves at an altitude of a few hundred kilometres. They
continue to propagate upwards and (according to some models) they may dissipate
enough energy to balance radiation from the chromosphere (e.g., Schatzman, 1949;
Kuperus, 1969; Ulmschneider, 1971, 1974, 1979; Kuperus and Chiuderi, 1976).
The models predict that waves with a period of only a few tens of seconds heat the
lower chromosphere. At one time, it was thought that 300 s waves could heat the
upper chromosphere, but now their flux is thought to be too low (Ulmschneider,
1976). Also, by the time the corona is reached, the uncertainties are very large, since
weak shock theory is no longer valid and there is considerable reflection and re-
fraction in the transition region.

6.3.1. STEEPENING

Section 5.1 describes the way in which acoustic waves steepen to form shocks, and
Section 5.2 includes a derivation of the jump conditions across a shock front. In
a uniform medium, sound waves steepen because every part of the wave profile moves
with a different speed. The crests possess a higher temperature than the troughs, and
so they propagate faster. If ¢ is the ambient sound speed and v, the velocity amplitude
(Section 4.2), the crest of the wave moves with speed ¢, + v, , while the trough moves
at only ¢, — v, . The crest therefore catches up the trough when the relative speed
of 2r, . Since the trough is initially half a wavelength (34) ahead of the crest. the time it
takes the trough to be overtaken is just 4/(4v,), and so the distance that a sound wave
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can travel at speed c, before shocking is

Ac
d= 6.4
dv, oy
or, in terms of the wave-period (z = 4/c ),

c?

L 3
d= %, (6.5)
From this result, it can be seen that short-period waves evolve into shock waves over
much smaller distances than long-period waves, which is why the former were thought
to heat the low chromosphere and the latter the higher atmosphere.

For a vertically stratified atmosphere, rather than a uniform medium, the distance
for shock formation is greatly reduced because the wave-amplitude increases rapidly
with altitude. The density for an isothermal atmosphere decreases with height like
p(z) ~ e~ *1, where A is the scale-height. With no dissipation, the total wave energy is
proportional to 1pv] ; this remains constant as the wave propagates up, and so the
wave amplitude increases as

b, (2) ~ €4, (6.6)

Thus, for example, taking a scale-height of 100 km, a wave starting in the low chromo-
sphere would find its initial amplitude of only 0.2 km s~ ', say, grow to the sound
speed (about 7.5 km s~ ') at an altitude of 1000 km. The distance required for a shock
to form in the stratified medium becomes

PRI .
TOREL "R,

in place of Equation (6.5), according to Stein and Leibacher (1974). For instance,
setting y = 5/3,c,=6kms™', 4 = 130 km, a wave with an initial amplitude (v,) of
0.6 km s~ ! at the base of the chromosphere would develop into a shock at an altitude
of 500 km if its period were 10 s or 800 km for a period of 30 s. This makes it most
unlikely that the heating of the chromosphere is due to damping (by thermal con-
duction) of small-amplitude linear waves, since they develop into shocks too quickly.

The height of shock formation is in practice governed by the extent to which the
wave is damped (as well as the height of generation, the initial amplitude and the
wave-period). A wave can dissipate its energy through viscous, thermal or radiative
losses, the last being the most important up to a height of about 1000 km (Osterbrock,
1961). Ulmschneider (1971) has estimated the radiative damping time to increase
from 30s at h = 0 in the photosphere to 750 s at h = 400 km and thence to decrease
to 300s at h=1000km, for the Harvard-Smithsonian Reference Atmosphere.
His calculations demonstrate that sound waves with a period less than 100 s can
propagate into the chromosphere and steepen into shocks below a height of 1000 km.
Later, Ulmschneider and Kalkofen (1977) found that the effect of radiative damping is
to make the height of shock formation independent of period.

6.3.2. PROPAGATION AND DISSIPATION

Three approximate theories have been developed to describe the propagation of a
shock wave through an inhomogeneous atmosphere. Geometrical acoustics (Jeffrey
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and Taniuti, 1964) makes the assumption that the shock energy remains constant,
although a correction to include the dissipation can be added easily when the atmos-
phere has weak gradients. The Chisnell-Witham method (Witham, 1974) replaces
an inhomogeneous atmosphere by a series of homogeneous layers. It neglects the
reflected waves that are generated at each interface as the shock passes through,
and also it does not include the effect of dissipation on the shock strength. However,
a more useful theory for obtaining the dissipation from periodically generated shocks
is that of Brinkley and Kirkwood, as developed by Schatzman (1949), Osterbrock
(1961) and Ulmschneider (1971). It has been described by Bray and Loughhead (1974)
and is outlined below.

Consider a train of shock waves that have developed from waves of frequency
v, so that the time interval between successive shocks is v~ !. The flux of energy
transmitted per second by the shocks at an altitude z, is the work done by the
pressure, namely F(z) = v[(p — p,)v de/fdt, where the integrals are performed
over one period; the front of the shock and its rear are denoted by subscripts 1 and 2,
respectively. The energy flux may be rewritten

F(Z} = v(pz s P1 )vz Iofr (6?}
in terms of a characteristic time (t,,) that is assumed (for self-similarity) to be indepen-
dent of height. t, depends on the shock profile and is taken as /12 by Ulmschneider
(1971), where 1 is the duration of the shock pulse. The jump conditions (5.14) to (5.16)
may be used to write the energy flux (6.7) in terms of the fractional compression
=(p, —p,)/p,. For weak shocks (p, = p,), it becomes

F(z) = vp, (2)c,, (2)* 212 . (6.8)

Now, following the passage of a shock, some energy is used in returning the plasma
to its initial state. Schatzman suggested that it first expands adiabatically to its original
pressure and then cools by radiation to its original density, ready for the passage
of the next shock. For weak shocks, the resulting rate of energy dissipation is

-*V}’(}'+ l]P,'-?SEd_F

12 dz &0

Since this is proportional to the wave frequency, short-period waves will dissipate
faster than long-period ones. The corresponding rate of decrease of the peak pressure
is

dp, _dp, (v +Dpin*

dz iz 12F &

which, when solved simultaneously with Equation (6.9), leads to a decrease of both p,
and F with altitude like z~ /2, An alternative procedure is to differentiate Equation
(6.8) with respect to z and equate it to Equation (6.9). The resulting differential equa-
tion for the shock strength (#(z)) has been solved numerically by Ulmschneider
(1971) for a model atmosphere, including the additional effect of shock refraction
away from the vertical. He deduces the dissipation as a function of height for a range
of periods, and he finds agreement between this energy dissipation and the radiative
loss in the lower chromosphere only if the shock period lies between 10 and 30 s. The
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necessary s_hoc_k_ strengths () lie between 0.1 and 0.5, so that the weak shock approxi-
mation is justified. In order of magnitude, the distance it takes a shock to dissipate
significantly, the so-called shock damping-length, is

E c,lo
&Fia" i (610

from Equations (6.7) and (6.9).

It may be noted that, in order to use the general energy equation (2.30) in modelling,
one needs to insert a form for the heating. When heating is from weak acoustic
shocks, it is given by Equation (6.9) in terms of the shock strength (7(z)). If, further-
more, the shock Mach number (M (2)) is known as a function of altitude, the heating
may be deduced from

H=2vpy + )p,(M, — 1), (6.11)

and so, for constant M, it is proportional to the plasma pressure. This differs from
the heating forms that are sometimes used in static models, namely heating uniform
or proportional to density. There is always a definite relation between nand M:
in general, it can be obtained by integrating Equations (6.8) and (6.9), but for weak
shocks i = (4(M, — 1)/(y + 1)).

Short-period acoustic waves (10 to 50 s) are, accordin g to the above theory. expected
to develop into weak shocks within a few hundred kilometres of the chromospheric
base and to heat the low chromosphere. This heating mechanism has recently been
put-on a firmer foundation by some numerical calculations of Ulmschneider and
Kalkofen-(1977) with an improved hydrodynamic code including radiative damping.
The height of shock formation agrees with the position of the temperature minimum
(namely 500km for the Harvard-Smithsonian Reference Atmosphere) provided
the wave period lies between 25 and 45s and the initial acoustic flux is 3 to
6 x 10* W m~ 2. Furthermore, the acoustic flux at the height of shock formation
agrees with the chromospheric radiation provided the period is less than 35 s and the
initial fluxis 2to 6 x 10* W m~2.

Longer-period waves were once expected to increase in amplitude as radiative
damping becomes less effective above 200 km and to develop into strong shocks
with 7 > 1 in the upper chromosphere. (Indeed, the shocks may well be strong lower
in the atmosphere. so that weak-shock theory is invalid and gives no more than a
qualitative picture.) Self-consistent models for heating the upper chromosphere and
corona by strong shocks have been computed by, for instance, Kuperus (1965) and
Ulmschneider (1971) assuming hydrostatic equilibrium and a thermal balance
between conduction, radiation and heating. However, observations from the OSO 8
satellite (Athay and White, 1977) give strong evidence that 300-s waves have insuffi-
cient energy to heat the upper chromosphere, because their amplitudes have been
reduced cither by scattering from chromospheric inhomogeneities such as spicules
and fibrils or by refraction in the region of rapidly increasi ng sound speed (see Section
6.4.1). In the low transition region at a temperature of 10° K the observed fluctuations
are largely aperiodic and the shocks are very weak with an energy flux of
only 10 Wm™2. Thus, although short-period acoustic shock waves may well heat
the low chromosphere, some form of magnetic heating is probably needed for the upper
chromosphere and corona (i.c.. resonant absorption or tearing instability).

2
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6.4. Magnetic Heating

The importance of the magnetic field in heating the solar atmosphere is being in-
creasingly recognised, and one expects this subject to receive a great deal of attention
in the future. At first, it was believed that the magnetic field had the secondary role
of just enhancing the heating in active regions and in the network. But the discoveries
of intense kilogauss fields (Sections 1.3.2B and 8.7) at supergranulation boundaries
in the photosphere, and of coronal loops and bright points in soft X-ray photographs,
have emphasised the dominance of the magnetic field in these regions too. Further-
more, the probability that insufficient acoustic flux reaches the upper chromosphere
and corona has led to the suggestion that, even for the ‘quiet’ corona, the dominant
heating mechanism is due to the magnetic flux that spreads upwards from super-
granulation boundaries. The heating of both quiet and active regions would then
be caused by the same mechanism, with active regions receiving more heat simply
because the concentration of intense flux elements is higher. Two of the possibilities
for magnetic heating are magnetic waves and direct magnetic dissipation. The actual
cause of heating is the same in both cases, namely ohmic or viscous dissipation in
small-scale regions, but the means of producing the regions is different, so that in one
case the current sheets are propagating (i.e., magnetic shocks) and in the other case
they are non-propagating.

Magnetic field disturbances are generated by the motion of the footpoints of
field lines in the photosphere. For instance, the intense fields at supergranulation
boundaries are continually being buffeted by granulation with a period of roughly
S min and a scale size of about 1000 km. Also, the footpoints are being shuffled around
on a supergranular time-scale of many hours. A general photospheric disturbance
produces waves of several types (such as fast and slow magnetoacoustic waves and
Alfvén waves) that may propagate upwards. The magnetoacoustic waves steepen
into shocks and dissipate in a similar manner to pure acoustic waves, with ohmic
heating providing extra dissipation. However, Alfvéen waves dissipate much less
readily. They require a nonlinear interaction to produce magnetoacoustic waves
that subsequently relinquish their energy. Areas in need of further study are the
way in which the generation of wave flux is affected by the magnetic field, the non-
linear coupling of the different wave modes and the propagation of magnetic waves
in an inhomogeneous medium.

The classical linear treatment for the propagation of a photospheric disturbance
as a wave through a uniform or slowly varying medium becomes inadequate in four
situations:

(i). when the initial disturbance is so large that nonlinear effects are important;

(i) when the source of the disturbance is closer than a few wavelengths, so that a
wave-train has not developed;

(iii) when the disturbance is so slow that its wavelength exceeds a scale-height,
ie, A > A, in which case the ambient medium cannot be considered slowly-
varying;

(iv) when the footpoints of magnetic field lines move more slowly than the Alfvén
travel-time (t,); in other words

I
T>1,=—, (6.12)
o
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or, equivalently, the wavelength exceeds the dimension ( L) of the configuration:
A= FE. (6.13)

In case (iv) the magnetic configuration evolves passively through a series of equili-
bria, set up by the relatively fast propagation of magnetic waves. However, the new
equilibria can contain current sheets, which then dissipate magnetic energy ohmically
and allow a reconnection of the magnetic field lines in the process. This has long been
proposed as a mechanism for releasing magnetic energy as heat and kinetic energy
in solar flares (see Chapter 10), but it may be taking place more often on a smaller
scale throughout the corona. Such mechanisms for heating plasma in a magnetic
field by waves or current-sheet dissipation are sketched in the sections that follow,
and they are also described in the reviews by Heyvaerts and Schatzman (1980),
Chiuderi (1981), Kuperus et al. (1981) and Hollweg (1981a).

6.4.1. PROPAGATION AND DISSIPATION OF MAGNETIC WAVES

In a classic paper, Osterbrock (1961) analysed the effect of the magnetic field on the
generation, propagation and dissipation of the waves that may heat the chromosphere
and corona. The analysis is limited to low-amplitude waves, with a wavelength much
smaller than a scale-height. For quiet regions, where the mean magnetic field may
be 2 G, upward-moving sound waves become increasingly magnetohydrodynamic
in character as the fall-off in density makes the Alfvén speed increase: indeed, above
a height of about 2000 km the Alfvén speed (v,) exceeds the sound speed (c,). For
plage regions, where the mean field strength is typically 50 G, the magnetic field
dominates even more and may cause the enhanced heating that is observed. Further-
more, the recent discovery of kilogauss fields at supergranulation boundaries (even
in ‘quiet’ regions) makes the magnetic field less homogeneous than Osterbrock
supposed and increases its effect on wave propagation.

It will be remembered that fast magnetoacoustic waves can propagate in any
direction, with a phase speed that varies from the maximum of ¢, and v, along the
magnetic field to (c2 + v%)"/? across the field. Thus, in a region where v, > c,, pro-
pagation is at v, equally in all directions. The slow mode, by comparison, can transmit
energy only in directions that are close to that of the magnetic field, the speed of
propagation being the smaller of ¢, and v,,. The third type of wave, namely the Alfvén
mode, possesses a group velocity of v, along the field and produces no change in
either density or pressure.

Osterbrock points out that, in regions where the magnetic field strength is below
the equipartition value of a few hundred Gauss, most of the wave energy that is
generated by isotropic turbulence in the convective zone takes the form of fast-
mode waves. Much smaller fluxes of slow-mode or Alfvén waves are generated,
and so he proposes the dissipation of fast shocks as the dominant heating mechanism in
the chromosphere.

The propagation and dissipation of fast waves differs quantitatively from that of
ordinary sound waves in several respects, according to Osterbrock. Consider, for
example, the refraction of waves as they propagate upwards in the stratified solar
atmosphere. Since the acoustic speed (c,) increases with height (from, say, 10 kms ™!
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at the photosphere to 200 kms™' in the corona), sound waves find their directions
of propagation rotate away from the vertical as they progress upwards, in much the
same way that light is refracted away from the normal as it crosses from water to air.
However, the effect on the Alfvén speed (v, ) of the fall-off in plasma density away from
the solar surface is to make the Alfvén speed increase even more rapidly with altitude
(from typically 10 km s~ at the photosphere to 10° km s~ in the corona). Thus the
refraction of fast-mode waves as they propagate upwards is even more pronounced
than that of sound waves, so that even less energy is likely to reach coronal layers.
Osterbrock calculated the ray paths in a vertically stratified plasma as follows. As the
phase speed (v,(h)) increases with height h (with the wave frequency remaining
constant), so the wavelength increases. But, by Snell’s Law, the horizontal component
of k must remain constant, and this makes 0(h), which is the inclination to the vertical
of the propagation direction, increase in such a way that sin O{h)jup{h) = constant.
The resulting ray path (h(x)) taken bv the wave in this approximation follows from
integrating dh/dx = tan 0.

The damping, prior to shocking, of upward-propagating magnetic waves may also
differ from that of acoustic waves. It is caused by ohmic as well as viscous dissipation
and, near the temperature-minimum region, by ambipolar diffusion too. For a wave-
length A, the time-scale for ohmic dissipation is simply t, = A%/n, where n is the magnetic
diffusivity, and so the distance that a wave can travel at the Alfvén speed, say, before
it dissipates (the so-called damping length) is

2

v,A
= A

L,=v,T,=4_

In terms of the wave frequency (w), this may be written L, = v}/(nw?), from which it
follows that dissipation is smallest for waves at the lowest frequency and in regions
of the highest magnetic field strength (and so largest Alfvén speed). Osterbrock
found that in the quiet Sun a weak field of 2 G would imply strong damping of Alfvén
waves or slow-mode waves (with a frequency @ = 1.2 x 10~ 2 Hz) at the low chromo-
sphere. However, the fast-mode waves suffer negligible attenuation, since they are
basically acoustic in the photosphere and therefore subject to only viscous dissipation,
which is less effective than ohmic dissipation. In plage regions, where the field strength
exceeds 50 G, Alfvén waves are able to propagate up through the chromosphere with
negligible damping and so contribute to the heating above, provided an efficient
dissipation mechanism exists there.

There are two effects which make fast magnetoacoustic waves steepen into shock
waves more slowly than sound waves. When v, > c,, the distance that a fast wave
needs to travel before shocking in a uniform medium is d = w?}/(4v,), by analogy
with Equation (6.5), and so it is larger than for sound waves. Furthermore, in a strati-
fied isothermal atmosphere the density falls off as p(z) ~ e "**, and the wave energy
flux is proportional to (3 pvi)v,, where v, is the group velocity. Since this flux remains
constant as the wave propagates up and the wave speed (v,,) is proportional to p~ /2,
the wave velocity amplitude increases as v, (z) ~ p~ '/* ~ ¢#“*, which represents a
much slower rate than that given by Equation £6.6) for sound waves.

Osterbrock extended the Brinkley—Kirkwood analysis for weak acoustic-shock
dissipation to fast-mode shocks in a straight-forward manner. One effect of the
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magnetic field is to introduce extra terms into the expression (6.7) for the energy
flux, due to the additional work done by the magnetic tension and pressure. The
resulting damping length for fast shocks is justd & v /i, in which the sound speed (c,)
in Equation (6.10) has been replaced by the fast-mode speed (v ). For a magnetic
field of 2 G, Osterbrock found the dissipation peaks at heights of 1000 to 2000 km
and is sufficient to account for heating of the low chromosphere. By the time the
corona is reached, however, the calculated direct fast-mode flux is far too small
to provide the necessary dissipation, and so he suggested that heating of the upper
chromosphere may be by slow-mode waves that are generated from the interaction
of the fast-mode shocks.

The heating of a coronal loop by fast magnetoacoustic waves of high frequency
(= 3s7!) has been suggested by Habbal et al. (1979). Such waves propagate across
the magnetic field and are refracted into regions of low Alfvén speed, where they
suffer significant collisionless damping if f is larger than about 0.1. The required
wave flux for such (as yet unobserved) waves is about 100 Wm™2 at the coronal
base. Provided that the wavelength is much smaller than the length-scale for Alfvén
speed variations, the ray paths (r(t))-satisfy

dr_d0  dk__ oo
g gk’ T

where the dispersion relation is @ = kv, when § < 1. The authors extend Osterbrock’s
analysis for a plane-parallel atmosphere by considering propagation in a dipole
magnetic field that contains isothermal plasma in hydrostatic equilibrium. Sample
results are presented for a large loop that reaches a height of half a solar radius and
contains plasma at about twice the ambient density. If f§ is large enough in the loop,
the required dissipation occurs in a loop-shaped region coming up from the magnetic
loop foot-points and passing below its summit. However, the effect of gravity is to
make these waves evanescent, and so the coronal amplitudes are significant only for
large horizontal wavelengths; furthermore, for such long waves a non-local analysis
is required. Zweibel (1980) has evaluated the damping of fast waves in more detail
and considered the energy balance between radiation and heating alone; she finds
the equilibrium is unstable thermally (Section 7.5.7) to the formation of cool filaments
parallel to the field. Furthermore, Hollweg (1981b) has pointed out two difficulties
with fast modes: they are efficiently reflected at the transition region and so may
never reach the corona; also, for values of w and horizontal wavenumber correspond-
ing to observed photospheric motions, fast waves should be evanescent.

6.4.2. NONLINEAR COUPLING OF ALFVEN WAVES

The corona may possibly be heated by Alfvén waves. Osterbrock considered such
low magnetic field strengths that the Alfvén waves would be strongly damped in
the photosphere and so would need to be generated higher up by interactions of
magnetoacoustic waves. However, it is now thought likely that a large flux of Alfvén
waves is generated at supergranulation boundaries, where the presence of intense
kilogauss fields allows them to penetrate the photosphere. They then propagate way
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up into the corona with hardly any attenuation at all. In fact, the damping of Alfvén
waves for fields larger than 10 to 100 G is so small that the problem is to explain
how they give up their energy before propagating away, either into the solar wind
along open field lines or back down to the photosphere along closed fields.

An Alfvén wave is likely to dissipate in practice because of its nonlinear interaction
with either the non-uniform ambient field or another Alfvén wave (Wentzel, 1974).
The method used to analyse the effect of magnetic field inhomogeneity depends on
the wave-period 7 = A/v,. For a magnetic field of 10 G and a density of 10'®m~?,
characteristic of the active-region corona, the Alfvén speed (v,) is about 300 kms™*
according to Equation (2.48b). Wavelengths (4) of 100 000 km, comparable with the
coronal scale-height, then correspond to wave-periods of 5 min. For periods much
less than 5 min, the wavelength is much smaller than a scale-height and so the Alfvén
waves propagate in a ‘slowly varying’ medium. As they propagate around a bend in
the magnetic field much of their energy is converted to fast-mode waves (provided the
waves are not well collimated along the field). They in turn decay rapidly and would
brighten the bends in a magnetic configuration such as a coronal loop or the region
above a supergranule cell. For wave periods of order or greater than 5 min, there are
large variations in the ambient medium over a wavelength and the ‘slowly-varying’
approximation fails. Significant dissipation is still expected, but the details have not
yet been worked out.

The nonlinear interaction of magnetohydrodynamic waves has been treated in
detail by Kaburaki and Uchida (1971), Chiu and Wentzel (1972), Uchida and
Kaburaki (1974). When the magnetic field is so weak that v, < c_, it is found that two
Alfvén waves travelling in opposite directions along a magnetic field line can couple
nonlinearly to give an acoustic wave, which in turn dissipates relatively quickly.
Suppose that the frequency (w) and wavenumber (k) of the two Alfvén waves and the
acoustic wave are denoted by subscripts 0, 1, 2, respectively, so that

wo=0,k,, o, =v,k,, ©,=ck,, (6.14)

where all the frequencies and wavenumbers are assumed positive. If a coupling of the
two incident waves is to occur, the resulting acoustic wave must possess a frequency

W, =w,+w, (6.15)

and wavenumber
k,=ky—k,, (6.16)

the minus sign resulting from the fact that the two Alfvén waves are propagating
in opposite directions. After substituting for the wavenumbers from Equation (6.14)
and eliminating w, between Equations (6.15) and (6.16), we find that the two Alfven
waves can interact in this way only if their frequencies are in the ratio w, /o, =
(¢, —v,)c, +v,). Furthermore, the resulting acoustic frequency is w, =2w,c,/
(e +v.)

In regions of strong magnetic field such that v, > c_, one Alfvén wave (w,, k) can
decay into another Alfvén wave (, , k,) travelling in the opposite direction together
with a sound wave (w,, k,) travelling in the same direction. The interaction takes place
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provided the selection rules o, +w, =w,, —k, +k, =k,, are obeyed, giving
Alfvén and acoustic frequencies of
Dy —e, g 2w,

W, =W -
1 0 2 2 e
v, 4+, v,+ec,

The resulting Alfvén wave has a frequency smaller than the original one and it can
in turn decay to another lower-frequency Alfvén wave plus an acoustic wave. The
cascade continues until all the Alfvénic energy has been converted to acoustic waves
that dissipate rapidly.

Wentzel (1974, 1977) has calculated the rates at which the waves interact and has
estimated the heating. He finds a significant production of acoustic waves from
Alfvén waves in regions where v, /c, lies between 1/30 and 30. Dissipation occurs
over distances comparable with coronal loop lengths, and it is strongest for wave
periods of about a minute and at locations where the magnetic field is greatest. For
an Alfvén wave of velocity amplitude v, , the wave energy flux is given by

F=3pviv,, (6.17)

where p is the ambient plasma density. Furthermore, the dissipation length for waves
of wavenumber k generating a density perturbation p, can be written in order of
magnitude as d = p/(kp,). For sound waves p,/p ~ v, /c , which gives Equation (6.4),
but Alfvén waves produce much smaller density changes, namely p, /p = 2n(v, /v, ).
(The factor 2x is appropriate to the case when oppositely travelling Alfvén waves
interact to give sound waves.) The dissipation length then becomes

w, (v, ‘ .
d= (2;’{)1([}1) » (6‘]8)

in terms of the wave-period (7).

Consider now whether Alfvén waves of period 10 s, say, may produce the required
heating for coronal loops. For interconnecting loops or quiet-region loops let us adopt
values for the necessary wave flux of 300 W m~2 and for the magnetic field of 12 G.
Then Equations (6.17) and (6.18) imply a wave amplitude of 20 km s~ ! and a dissipa-
tion length of 200 000 km, which is comparable with the half-length of such loops.
For weak active-region loops a wave flux of 5000 W m~ 2 and a magnetic field of 20 G
give a rather large wave amplitude of 60 km s~ ! and a dissipation length of 110 000 km,
again comparable with the half-length. We thus conclude that short-period (=~ 10 s)
Alfvén waves provide a viable means of heating coronal loops outside or on the edge of
active regions. Deep within active regions, the magnetic field (B) is stronger, and so
the dissipation length (proportional to B* for constant F) is too long. In this case
longer-period waves or magnetic field dissipation may be the answer.

When equal fluxes of Alfvén waves propagate up the two legs of a loop, the heating
due to their interaction is concentrated near the summit. Wentzel (1976, 1978)
has extended the above discussion to include asymmetric heating due to unequal
fluxes and also wave reflection at the transition region, which tends to equalise the
fluxes along a coronal loop and to disorder the waves below the transition region.

Hollweg (1979, 1981a, b) has considered heating by Alfvén waves in some detail.
Besides being tractable mathematically, the advantage of these waves is that they
propagate so easily without becoming evanescent or being internally reflected. Also,
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the energy propagates along the magnetic field, so heating the strongly magnetic
regions, and they are observed to dominate solar wind fluctuations at 1 AU. Hollweg
shows that the propagation of axisymmetric twists near the axis of a vertical flux tube
obeys

: i)
(Uiaa;sf + (02 ){Bé” 50) = 0, iw (S_B = B{l‘fza(Béﬁ 5]’)},

where  is the frequency and s is the distance along the ambient field (B,). He solves
these equations for the perturbed velocity (év) and magnetic field (6B) in a model
atmosphere, in response to imposed photospheric motions. Two cases of wave pro-
pagation are considered, namely in the open field of a coronal hole and in the closed
field of an active-region loop. :

In the open region, long-period waves (with a period () in excess of 10 min) possess
an energy flux of typically 10 Wm™2, and they may drive the solar wind (Sections
12.3 and 12.4.2). Short-period waves (10s < T <5 min) have an energy flux of 103 to
10* W m~2. They may drive spicules, and their energy is enough to account for
chromospheric and coronal heating. The problem used to be how to damp them, but
now there appear to be several viable dissipation mechanisms, although their details
still need to be worked out. Joule damping is important in the middle chromosphere
at high frequencies (Section 6.4.1). Nonlinear damping may occur by local velocity
shears inducing Kelvin-Helmholtz instability (Section 7.5.4) or by local magnetic
shears driving tearing modes (Section 7.5.5). Nonlinear coupling to fast and slow
modes (which damp efficiently) takes place especially in the chromosphere, because
the wave pressure is large (unlike the photosphere) and the waves are nonlinear
(unlike the corona). Finally, linear geometric wave coupling turns Alfvén waves into
fast waves (in the low-f corona), as they refract or propagate around curved field
lines. Solutions to the nonlinear equations for propagation up into a realistic
atmosphere by Hollweg et al. (1982) show that Alfvén waves can steepen into fast
shocks in the chromosphere, provided their periods are smaller than a few minutes
and the photospheric velocity amplitudes are of order 1 kms~! (or greater). They
suggest that such waves can drive upward flows (spicules) and can heat the upper
chromosphere and corona.

In a closed loop, resonant frequencies appear at multiples of v,/(2L), where L
is the coronal length of the loop. For example, a short loop with L= 20000 km,
B = 100G and n = 10'® m~? has resonant periods of 20s, 10's, 7 s ... . The resonances
occur because of reflections off the transition regions at the ends of the loop. They
act like windows, which allow a large energy flux (typically 1.5 x 10* Wm~?) to
pass unimpeded up into the corona, rather than being reflected off the steep Alfvén-
speed gradient. Leroy (1980) has used methods from optics to analyse the reflection
of Alfvén waves propagating up a vertical magnetic field (B, Z) containing an iso-
thermal plasma, for which the perturbed field (B,,) satisfies 6zle/3r2 = (B}/p)d/0z
(po(z)~" B, /0z). He finds that in a 1 G field, waves with periods of less than an hour
can reach the corona unreflected, but in a 3000 G field only those with periods lower
than 1's can propagate to the corona. This suggests that only short-period waves are
able to make use of intense flux tubes to reach the corona.
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6.4.3. RESONANT ABSORPTION OF ALFVEN WAVES

As pointed out in’Sec(ion 4.10.1, when the ambient medium is nonuniforma continuoys
spectrum of Alfvén waves may exist. The resonant absorption of such waves at singular
surfaces in the plasma has been suggested as a means of heating in laboratory plasma
de(\;u(::c]i ancigh?as been analysed by Grossman and Tataronis (1973) and Hasegawa
an en (1974). It may also provide a mechani i i
jousd g nism for absorbing energy in the solar
Consider a force-free ﬂux‘tube with magnetic field components B, =(0,B,,(R)
B,.(R)), an.d suppose there is a wave-like disturbance of the form f,(R, ¢, zw;] g
S1(R) exp {J(wr — m¢ — kz)). Then, by putting p, =0 in Equation (4.64), we can see
that the radial velocity perturbation (v, z(R)) satisfies

_d_( (Po® — (k*By)/wBYu  d
dR\(po®* — (m?/R* + K)B*/)RAR (R”m}) +Foip =0,

where F{R)zis given by Equation (4.65) and k-B,, = kB,,+ mR™'B,.
When m”/R? » p w? — k* B/ this simplifies to the equation

d d
d—ﬁ((ﬁ'owz = (k'BD)ZfF)Rd—k;(RDm)) +m'Fo, . =0

for Alfvén waves alone.
Consider also a unidirectional field and a plasma pressure which vary with x

B, =By(x)i, p,=p,(x),

and suppose the disturbances behave like.

Filsvzit) = f,(x) exp (i(cwr — kyy =k 2)).

Then? according to Equation (4.60), the perturbation equation for the transverse
velocity component (v, ) in the limit when k, is large enough becomes,

d do,
a;(ﬁ(x)—d—;—) e kiE(I)UlI = 0,

for Alfvén waves alone, where &(x) = Po(X)0? — k2B (x)*/p.

.Now, suppose that the footpoints of either the force-free flux tube or the uni-
dlretflnonal field are forced to vibrate at a given frequency (w). In general, the local
Al‘fvcn frequency w, = kB /(up,)'’? is not uniform but varies with R (or x). If there
exists a radius R* (or distance x*) at which @, = w, the coefficient of the second-
ordt?r term in the above differential equations vanishes; the equations will therefore
be singular at that point and’so a singular surface (or resonant absorption sheath) will
fc_)rm th_em The radial velocity component v,g (Or v, ) possesses a logarithmic
singularity, while vy (Or v, ) has a hyperbolic singulari;y and the plasma energy
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becomes infinite. However, analytic continuation of v, , (or v, ) through the singular-
ity shows that energy is continuously accumulating at the singular surface, and so it
may heat the plasma there. As the energy builds up, so the width of the surface de-
creases until a steady state is reached where the energy flux is dissipated ohmically
(or viscously).

The thickness of the singular layer is typically 10 ion-Larmor radii, but heating
may possibly occur over a much larger region if the Alfvén wave is first converted
linearly to a kinetic Alfven wave. It has a dispersion relation

w?= kﬁ v3(1 + k2p}),

where k and k, are wavenumbers parallel and perpendicular to the magnetic field
and p, is the ion Larmor radius. Dissipation of the wave is by kinetic effects such as
Landau damping. The above ideas have been examined by lonson (1978) as a
mechanism for heating coronal loops. He suggests that 5-min chromospheric
oscillations shake the footpoints of a loop and cause Alfvénic surface waves (Section
4.10.1) to propagate upwards along the surface of the loop. They in turn couple to
the kinetic Alfvén waves, which dissipate in an extremely thin sheath only 1 km thick.

Resonant absorption of more general magnetoacoustic waves is described by
Equation (4.59), which possesses resonance points where w ,(x) =® or w (x)=w
and cut-off points where @ (x) = @ or w _(x) = w. At the resonance points, v, _posses-
ses a logarithmic singularity and energy is resonantly absorbed as short wavelength
oscillations build up until they are limited by viscous or ohmic dissipation. At the
cut-off points, the wave becomes evanescent and most of the energy is reflected while
some can tunnel through. Thus, as a magnetoacoustic wave propagates in the solar
atmosphere with a certain frequency w, so the values of w,,@_,w,, o, will vary
and its nature will change. When @, < or w, < < w_ it propagates, but when
w_<w<w, or w<w, it is evanescent. The wave is evanescent both sides of the
Alfvén resonance, but it changes from being propagating to evanescent at the cusp
resonance, which is therefore likely to have more energy being fed into it.

6.4.4. MAGNETIC FIELD DISSIPATION

When photospheric motions are sufficiently slow and the wavelength sufficiently
long that the conditions (6.12) and (6.13) hold, a wave description ceases to be helpful.
Instead the coronal magnetic configuration evolves passively through a series of
equilibria, which store energy in excess of potential. This energy has come originally
from the photospheric motion. The electric currents associated with such large-
scale equilibria produce ohmic heating, which is, however, completely negligible,
since the coronal conductivity (o) is so large. This is true even when allowance is made
for the fact that the corona is probably in a permanent state of weak turbulence, with
an anomalous electrical conductivity (¢*) that is a factor of a hundred or so lower
than the classical value (Benz, private communication). The only way that magnetic
field (i.e., ohmic) dissipation can produce the necessary coronal heating is for the
magnetic field changes and accompanying electric currents to be concentrated in
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FILAMENT

4

Fig. 6.4. Tl?ree geometries for a current concentration in which enhanced magnetic field dissipation
may occur. Light arrows label magnetic field lines, whereas large arrows indicate electric current directions

extremely intense current sheets, current sheaths (around flux tubes) or current fila-
ments (Figure 6.4). If the current density is so strong that the width of such a current
concentration is less than (typically) a few metres, the dissipation may be considerably
enhanced by the presence of plasma turbulence (Section 2. 1.5).

Provided current sheets, sheaths or filaments can be formed, they produce a rapid
conversion of magnetic energy into heat (by ohmic dissipation), bulk kinetic energy
and fast-particle energy, in a manner that has been studied extensively in connection
with the more violent heating of a solar flare (Section 10.1). This suggests that, especial-
ly in the strong magnetic field of an active region, the corona is in a state of ceaseless
activity and is being heated by many tiny micro-flarings that are continually generat-
ed by‘thc photospheric motion below. The coronal loops that stand out in soft X-
ray pictures are those in which most heat is being released and then conducted
efficiently along the magnetic field.

The features of heating by magnetic (or current) dissipation that need to be under-
stood concern the way in which current sheets, sheaths or filaments are formed, are
maintained (if necessary) and decay. The order-of-magnitude estimates of Tucker
(1973) and others are described below, to determine how thin the resistive regions
need to be to provide the necessary heating. A discussion of the formation of current
sheets or filaments is also given, but no convincing explanation for sheaths has yet
been put forward. Of the three proposed alternatives, current sheets have received
by t_'ar the n{ost attention; they may be formed either by pushing topologically distinct
regions against one another or by magnetic non-equilibrium. In the former case, they
are maintained for as long as the external footpoint motion continues. Current
filaments may be created as a result of tearing-mode instability (Section 7.5.5) or
thermal instability (Section 6.4.4C).

6.4.4A. Order of Magnitude

Tuckgr (.197_3} and Levine (1974) were among the first to suggest coronal heating by
the d1551.pat10n of non-potential magnetic fields. They considered neutral current
sheets dispersed throughout active regions, and they established qualitatively that
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current dissipation could provide enough heat for the corona. Tucker supposes that
inagnetic energy is being stored at a rate
w 2
—-»d a ﬁ_ L
de 2u
by photospheric motions (v) that twist a magnetic field of strength B over an area
L?. The energy is at the same time being dissipated ohmically, at a rate

(6.19)

jZ
D=x ?LJ (6.20)

for currents (j) distributed uniformly through the volume (L?) of the active region.
If the magnetic field is being twisted up faster than it is relaxing ohmically, the excess
energy will be stored until it is released as, for instance, a solar flare. But, if the two
rates (6.19) and (6.20) are equal, the active region will maintain a steady state. The
effective twisting speed (v) that is needed to provide a heat input of, say, 3000 W m ™2
to the corona can be found from Equation (6.19) as v &~ 100 m s~ ! for a photospheric
field strength of 100 G. Furthermore, uniform dissipation throughout the active
region with a classical Coulomb electrical conductivity (¢) requires a current density
that can be estimated by equating DL~ * from Equation (6.20) to 3000 W m ~2, With
L ~ 10 000 km, Tucker finds j & 30 A m~ 2. Since this corresponds to the rather large
magnetic field gradient of 0.4 G m ™!, he suggests that the dissipation is concentrated
at thin current sheets rather than distributed uniformly. The ohmic dissipation inside
sheets may be greatly enhanced above normal because of the much larger electric
currents and the possibility of plasma turbulence, but the sheets occupy only a small
fraction of the active-region volume. For each sheet of thickness /* and area L*? with
an electric current j* =~ B/(ul*) and a turbulent electrical conductivity (6*), the rate
of heat generation is

BZ LtZ

pzc'*t'—*'

k2
D* L I or D*x
a

Tucker adopts a turbulent conductivity that is about a million times smaller than the
classical value and assumes a sheet width of 10 m, consistent with the critical current
for turbulence onset. He finds that only a few current sheets of length L* = 1000 km
are necessary to generate the heat that is required for an active region. Levine (1974)
suggested that the tangled nature of coronal magnetic fields produces many small
current sheets that are collapsing. During the collapse, particles are accelerated and
then thermalised by Coulomb collisions in the surrounding region.

Rosner et al. (1978) support Tucker’s ideas for direct coronal heating by magnetic
dissipation. They point out that the observed intensity of active regions in X-rays
appears to be directly related to the level of photospheric magnetic activity. Early in
the life of an active region, the magnetic field is complex and the corona bright, where-
as one rotation later the region often possesses a more dispersed field with a coronal
plasma whose pressure is an order of magnitude lower. Instead of heating in current
sheets, Rosner et al. suggest that the heating is concentrated in current sheaths, which
are thin, annular regions near the edges of coronal flux tubes or loops. The loops are
stressed by twisting motions at the footpoints, and, in a steady state, the work done
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by photospheric motions balances the coronal dissipation. Once the heat has beep
released, it is conducted along the magnetic field very efficiently (and so produceg
loop-like structures), but the distance that it is transported across the field depends
on the nature of the small-scale instabilities that may be present. Golub et al. (1980)
discussed the problem further and suggested that heating due to twisting motions
(v,) in a loop is E,; ~ B,B,v,/L per unit volume. Equating this to Equation (6.40)
gives a scaling law p ~ B'?/7, which relates the loop pressure and field strength anq
agrees reasonably with observations.

The main uncertainty with the model concerns the way in which the necessary
strong currents are created and maintained. In order to provide sufficient heating, the
current sheath in the loop needs to be typically 50 m thick and the sheath plasma
must be turbulent, with an electrical conductivity smaller than normal by a factor
of 10*. However, (apart from flaring situations (Chapter 10)) it seems unlikely that
large enough current densities can be produced in a loop to create and maintain a
strongly turbulent plasma. A more likely alternative is magnetic dissipation in the
loop by means of resistive instabilities (Section 7.5.5), such as the collisionless (or
collisional) tearing mode, which occurs for much smaller current densities.

The possibility of magnetic dissipation was later considered in more detail. Sakurai
and Levine (1981) analysed the generation of force-free fields and the storage of
magnetic energy in the corona due to small photospheric motions at the footpoints
of both a uniform and a bipolar configuration. Sturrock and Uchida (1981) estimated
the rate of increase of magnetic energy due to a stochastic motion of the photospheric
footpoints of a coronal loop. They obtained scaling laws for a loop’s temperature
in terms of its length and magnetic field strength. Also, Ionson (1981, preprint) set up
an interesting LRC circuit analogue for coronal loops.

6.4.4B. Current Sheets

Current sheets may be formed in several ways. One is by the interaction of topologically
separate parts of the magnetic configuration of, say, an active region. High-resolution
observations of the photospheric magnetic field (e.g., Figure 1.10) exhibit a highly
complex magnetic pattern with frequent changes of polarity. The coronal field is also
complex, with many distinct magnetic flux tubes shown up by X-ray and EUV
pictures (e.g., Figure 1.15). As the photospheric footpoints of coronal loops move,
so the neighbouring coronal flux-tubes will respond and interact with one another,
either moving further apart or coming closer together. At the interface between the
two tubes, a current sheet is formed, the magnetic field reconnects, and magnetic
energy is released in the process. Such magnetic dissipation takes place not only
when neighbouring magnetic field lines are oppositely directed, as in Figure 6.5, but
also when the field lines are inclined at a non-zero angle (Priest and Sonnerup, 1975).

The formation of current sheets when new magnetic flux is emerging from below
the photosphere has been studied in connection with solar flares by several authors
(see Section 10.2.1), but the same calculations are applicable when magnetic flux is
evolving rather than emerging. In particular, it must be stressed that the current sheet
is a response to the applied photospheric motions. If the neighbouring footpoints
move relative to one another at a certain speed, then the corona will just respond

Fig. 6.5.
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by creating a current sheet and allowing magnetic reconnection at that speed (provid
the speed is less than a maximum value (Section 10.1)). Furthermore, the reconnectizd
and .asso¢iated dissipation is maintained as long as the relative footpoint-motion
continues, with the dimensions of the current sheet depending on the rnagnefn
field strength and photospheric speed. Conditions inside the sheet will only t:l.z
turbulent if the resulting sheet width is small enough. Indeed, it is when the width b
comes less than a critical value that a subflare or flare is triggered, according to t;-
emerging flux mechanism (Section 10.2.1). It should also be noted that slow magnetoe
acoustic shock waves radiate from the ends of the current sheet and that fine jets 0;
p_lasma are emitted between pairs of shocks. As plasma comes in slowly from th
sides, the bulk of the heat is released at these shock waves rather than in the centrai
current sheet itself.

Current sheets may also develop when magnetostatic equilibrium becomes yn-
stable or even ceases to exist, a situation known as non-equilibrium. In a simple bipolar
magnetic field when the photospheric footpoints move slowly, the low-f (Section 2.5)
corona responds by establishing a series of force-free configurations (Section 3..5)
In general, however, the coronal magnetic field is much more complex than this‘
and it contains topologically distinct flux systems. Parker (1972) and Syrovatsk);
(1978) have demonstrated that, as the footpoints of such a magnetic field move, the
corona cannot adjust to a new force-free equilibrium and current sheets are formed
instead. These current sheets are themselves not in equilibrium, since they allow a
rapid reconnection at some fraction of the Alfvén speed (Section 10.1), and the
magnetic configuration reduces to the state of lowest potential energy. Parker referred
to such a process as topological dissipation. Continual footpoint motion means that the
coronal field is all the time responding by reconnecting and so converting magnetic
energy into heat.

Parker (1972) establishes that, if the pattern of small-scale variations is not uniform
along a large-scale field, then the field cannot be in magnetostatic equilibrium. In other
words, equilibrium exists only if the field variations consist of a simple twist extending
from one footpoint to another. More complex topologies (such as braided flux tubes
with several field lines wrapped around each other) are not in equilibrium. To obtain
his result, Parker considers a uniform configuration, having a plasma pressure p
and magnetic field Bz, with the footpoints anchored at the planes z= + L (Figurg
6.6). Suppose that a displacement of the footpoints by at most A( < L) leads to small
dev.'iations (B, and p,) from the uniform field and pressure, respectively, so that B =
B,z+ B,(x, y,2),p=p,+ p,(x, y,2), where B,/B,~p, /p,<1. Then the equation
— Vp+(V x B) x B/u =0 for magnetostatic equilibrium (Section 3.1) becomes, to

first order,
i B.B.. B,dB,
V(Pl +—,u )+—‘u ¥ ™y =0 (6.21)

But the basic equation V-B =0 gives V-B, =0, and so the divergence of Equation
(6.21) implies

B,B
V2 (pl + %) =0. (6.22)

Now, variations:of (p, + BB, /) extend at most a distance of order A( < L) into
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Fig. 6.6. Schematic drawing of the topology of magnetic tubes of force following a displacement of the
ends of the tubes where they intersect z = + L (from Parker, 1972).

the region —L <z < L from the end-planes (z = L), so the solution to Laplace’s
equation (6.22) is

BOB]z
p, + o = constant, (6.23)

save in boundary layers of width A near z = + L. However, the z-component of Equa-
tion (6.21) is dp,/dz=0, and hence the z-derivative of Equation (6.23) implies
0B, /0z =0. Thus, if a field is in magnetostatic equilibrium, its pattern does not
vary along the general direction of the field, which establishes Parker’s result. Sakurai
and Levine (1981) have since established that the perturbed field is determined
uniquely by a small motion of the footpoints*. Nevertheless, the detailed consequences
of Parker’s result remain to be seen when finite-amplitude displacements at the
boundary are taken into account. Later, Parker (1981) suggested that large displace-
ments of the feet of a flux tube could cause the tube to become dislocated from its
initially neighbouring field. In its new quasi-equilibrium position the tube would
become flattened and eventually dissipated.

Green (1965) and Syrovatsky (1971) demonstrated that the slow, continuous
deformation of a two-dimensional potential magnetic field containing neutral
points leads to the production of neutral current sheets in the perfectly conducting
limit. Consider the initial magnetic field B, =y, B, = x, which may be written in
terms of the complex variable z = x + iy as

B,+iB, =z, (6.24)

and contains a neutral point at the origin (Figure 6.7). Next, suppose that this con-
figuration is deformed by the imposition of a uniform electric field (perpendicular

* All the variations occur in the boundary layers near + L, and so Figure 6.6 is misleading.
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to the z-plane) that drives a motion normal to the magnetic field. If the plasma is

regarded as perfectly conducting, the field lines are carried with the motion and
Ohm’s Law may be written

E+vB=0. (6.25)

It is clear that the instantaneous plasma speed is determined by Equation (6.25)
everywhere except at the neutral point where B vanishes. Furthermore, suppose that
the flow speed and plasma pressure are so small that the configuration passes through
a series of equilibria with vanishing Lorentz force, so that in this two-dimensional
situation

0=JB. (6.26)

The peculiar role of the neutral point is evident in both Equations (6.25) and (6.26),
which imply that a continuous deformation of the original field (6.24) through a
series of potential configurations with j = 0 is possible everywhere save in the vicinit y
of the neutral point. At the neutral point itself, Equation (6.26) allows non-zero
currents. Indeed, a solution to the problem is that a current sheet develops, represent-
ed by a cut from z= —iL to z= +iL, say, in the complex plane. The resulting
magnetic field components are given by B, +iB, = (22 + L?)"/2, and the field is
sketched in Figure 6.7. This complex variable technique for obtaining the position
of the current sheet that forms as oppositely directed fields approach one another
has been extended to the case of approaching bipolar fields that are equal (Priest and
Raadu, 1975) or unequal (Tur and Priest, 1976). In the latter case the sheet is curved.
All these calculations use the assumption that the plasma remains frozen to the field
everywhere, but in practice this approximation fails inside the current sheet. During
the approach of the two flux systems, the current sheet bifurcates into two slow
magnetoacoustic shocks and reconnection occurs in the manner described in Section
10.1. When the footpoint motion ceases, the magnetic configuration rapidly reduces
(over an Alfvén travel-time) to its lowest energy state, namely a potential field.
Syrovatsky (1978) generalised his previous result for potential fields to show that a

\_’/

current

neutral sheet
point
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Fig. 6.7 (a) A potential magnetic field near an X-type neutral point. (b) The field produced by the slow
motion indicated in {a) by solid-headed arrows. The plasma is assumed perfectly conducting.
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continuous deformation of a force-free field in general leads to the production of
current sheets. It is only for rather simple fields and simple footpoint motions that
no current sheets are generated (see Section 3.5). Suppose a magnetic configuration
evolves through a series of force-free states such that

(V x B) x B=0, (6.27)

with V-B =0. Then, in general, this evolution cannot maintain the condition of
frozen-in flux, since, given a time-sequence of magnetic fields satisfying Equation
(6.27), the solution of the induction equation
B
i =V x(vxB) (6.28)
ot
for v x B requires it to have (in general) a component parallel to B. This is unaccept-
able since v x B must be normal to B by definition. The difficulty in solving Equation
(6.28) for a given magnetic field shows up particularly clearly when a closed magnetic
field line (C) exists. Simply integrate over a surface (S) bounded by such a C to give

ij J.B‘dS=J‘ (v x B)-ds. (6.29)
at s c

Then, for a given sequence of solutions to Equation (6.27), there is in general no
reason to suppose that the flux through § should remain constant. This implies that
the left-hand side of Equation (6.29) is non-zero, whereas the right-hand side must
vanish (since v x B is normal to the field-line curve (C)).

More details of the formation and properties of curent sheets can be found in the
reviews by Priest (1976, 1981b).

6.4.4C. Current Filaments

A magnetic configuration that is non-potential, such as a sheared force-free structure,
may become unstable in several ways with the electric current concentrating into
filaments. One mechanism is the tearing-mode instability, which is described in
Section 7.5.5 (see also Galeev et al. (1981), who suggest nonlinear kinetic tearing as an
effective heating mechanism for coronal loops), and another is thermal instability.
Heyvaerts (1974) has described two such types of instability, namely the Joule mode
and the antidiffusion mode. They both cause a uniform electric current to concentrate
into many small current threads (or filaments) parallel to the magnetic field. The main
conditions for the validity of his analysis are that the temperature be about 10° K, so
that the radiative loss function (Q(T)) be approximately constant (Section 2.3.3),
and that the perturbation wave-number (k) be both small enough that thermal con-
duction is swamped by Joule heating and also large enough that a local stability
analysis is applicable.
For a disturbance propagating at an angle (6) to the ambient magnetic field with
7 =3, and an electrical conductivity (¢) proportional to T2, the Joule mode has a
growth-rate
=3
® = (sin2 0 — cos? 6) 2, (6.30)
6P,
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where j, is the equilibrium current density and p,, the equilibrium pressure. It occurs
most effectively for 0 = %n, and so it forms fine structures aligned along the magnetic
field and consisting of hotter current concentrations separated by cooler regions. The
mode is, however, restricted to wavenumbers k > (wuo)'/?, such that the plasma s
not frozen to the field, and another limitation in applicability is that the current
density needs to be rather large for the growth-rate to be reasonably high. For example,
suppose we adopt T, = 10° K, N, = 10'° m ™, together with a turbulent conductivity
that is a factor of 100 smaller than the Coulomb value (2.17) and a current density
jo=1A m~? (corresponding to a magnetic field change of 100 G over 1000 km),
Then (6.30) gives a growth-rate of only 4 x 107*s™ .

The antidiffusion mode causes the magnetic flux to concentrate rather than diffuse
and it occurs only for 6 close to %m Its growth-rate is ;

kz
~ o0 — L
so that @ > k?/(uc) and the plasma is almost frozen to the field. A local increase in

temperature enhances the electrical conductivity and current density, which in turn
produces more heating and drives the instability.

o (6.31)

6.5. Coronal Loops

The solar atmosphere, which has a vertical stratification produced by the force of
gravity, is by no means uniform in the horizontal direction and possesses a complex

Fig. 6.8. An active-region loop system in the EUV line of O w1 (3 x 10° K) (courtesy R. Levine, Centre
for Astrophysics, Harvard).
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TABLE 6.2.
Typical length 2L( % 1000 km), temperature T(K) and density n(m~3) for the different
kinds of coronal loop

Interconnecting  Quiet-region Active-region Post-flare Simple-flare
2L 20-700 20-700 10-100 10-100 5-50

T 2-3x10° 1.8 x 108 10% — 2.5 x 10°® 10* —4 x 10°  <4x107

n 7x10' 02-10x 10! 05-50x10'* 10" <10'®

structure dominated by the magnetic field. X-ray and EUV observations such as those
from Skylab have indicated that the corona (outside cororal holes) consists largely of
loop structures that presumably outline the magnetic field. Five morphological
types of loop are found, namely, interconnecting loops, quiet-region loops, active-
region loops (an example being shown in Figure 6.8), ‘post’-flare loops and simple
(compact) flare loops. General properties of their structure have been discussed, for
instance, by Priest (1978) and Chiuderi et al. (1981), and their observational
characteristics are summarised in Sections 1.3.4B and 14.1C and Table 6.2. We
describe below a model for the temperature-density structure of coronal loops,
together with some general comments about the types of flow that may be expected

in them.

6.5.1. STATIC ENERGY-BALANCE MODELS

For a loop in hydrostatic equilibrium and in thermat equilibrium between conduction,
radiation and heating, the temperature (T) and electron density (n,) satisfy (see
Equations (2.32) and (3.5))

el dT
gl 1! TSR__ A \=m?:T*—H (6.32
A ds(xo ds ) 2 )
and (for fully-ionised hydrogen)
1 dp
e = —mnJg, (6.33)

where the pressure
p=2nksT; (6.34)
A(s) is the cross-sectional area of the loop at a distance s along it from the base, and

0(s) is the inclination of the loop to the vertical (Figure 6.9). For given forms of A(s) and
0(s), the Equations (6.32) and (6.33) are to be solved subject to: (i)

P=Pgy- T=T,, (6.35)
at the base (s = 0) of the loop, and (ii) the symmetry condition

3 (6.36)

ds

at the summit (s = L).
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s=0
To
My

Fig. 69. The notation for a symmetric coronal loop of length 2L with temperature T, and density n, at
the footpoint (s = 0), and T, and n, at the summit (s = L). r is the ratio of loop height to half the base length
(D), and d is the ratio of the diameter of the loop cross-section at the top to that at the footpoint.

With T, fixed, the temperature profiles and, in particular, the summit temperatures
(T,) are determined by three parameters, namely the loop length (2L), the base
pressure (p,) and the heating rate (H), so that T, = T, (L, p,, H). The value of T, is
fairly arbitrary, but, when a value near the temperature minimum or a chromospheric
plateau is taken, we have a so-called thermally isolated loop, for which the above three
boundary conditions must be supplemented by

dT

— =0 ats=0.
- ats (6.37)

In this case, the summit temperature is a function of only two parameters: T, =
= T, (L, H), since the base pressure cannot be freely prescribed as in Equation (6.35)
but must be adjusted to a value p, = p,(L, H) determined by the remaining boundary
conditions. Of course, in practice there may be some complicated feedback if H itself
depends on p,,.

6.5.1A. Uniform Pressure Loops

For very low-lying loops, whose summits are much below a coronal scale-height of
roughly 80000 km (Equation 3.10), the loop pressure is uniform, and so one needs
to solve just Equation (6.32), with n, given by Equation (6.34) and p constant.
Consider first the thermally isolated loops with uniform cross-sectional areas
(Rosner et al., 1978). Their summit temperatures may be estimated in order of magni-
tude as follows, by using the fact that, whereas the relative sizes of C, R, H vary locally,
their global (or integral) values are similar. Since the heating and radiation in Equa-
tion (6.32) are globally of the same order, the heating is roughly
%
H"'4k§T1 : (6.38)
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in terms of the summit temperature. (Here « is approximated by —1.) Furthermore,
the thermal conduction term has a similar size to the radiation term, and so Equa-
tion (6.32) gives, in order of magnitude,

KOTI"ZW sz T-52
vl ¢ 3
LF a2

or, after rearranging,
e (pL)*7. (6.39)
The constant of proportionality, namely (4k2x /)~ "/, is about 10 000 in m.k.s. units

(when x,=10""" x=1073%k, =14 x 10~23), Substitution of T, from Equa-
tion (6.39) in (6.38) then gives

H~a L (6.40)

for the mechanical heating. If one regards the loop heating as being prescribed, so that
its pressure just responds to preserve equilibrium, Equations (6.39) and (6.40) may
be rearranged to give

T~ PP, g BT (6.41)

This implies that both the temperature and pressure are increased by either stretching
a thermally isolated loop or enhancing its heating.

When T, > T,,, the above order-of-magnitude expressions (6.39), (6.40) for heating
and summit temperature may be derived rigorously from Equation (6.32), subject to
Equations (6.35) to (6.37), as follows. Multiply Equation (6.32) by T52 dT/ds and
integrate from the loop summit, so that

1 dT N r P’y
i TSJ"Z_ e TS{Z _T-S,fz .- dT.,
z"°( | ds) J (4ks

Ty
or

3% \das) T4
Now, since T, > T, and the conductive flux (x dT/ds) vanishes at the base, Equa-
tion (6.42) gives

2 2 2H
- r’(d—z) G- T a1 R

2
P X2
— T .
e

which is just Equation (6.38), apart from the factor 3.5. After substituting for H and
taking the square-root, Equation (6.42) then reduces to

Tsz_,( PZX )1132(1 5 Ts;z)uz
ds  \2kk, ke

which in turn integrates to give the loop length as

% 2 1/2
Lp= <_"‘;"°) 72,
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where I = [(1%(1 — t5/2)" "2 d¢ is approximately 0.72. Finally, taking the cube-rooy
gives the same scaling law as Equation (6.39), but with a constant of proportionalit
larger than before by a factor of only 2'/61~ '3, Full numerical solutions of the equa):
tions of energy balance and hydrostatic equilibrium by Wragg and Priest (1982
show that the scaling law is accurate for short loops. However, for sufficiently lon
(or rare) loops, the temperature may be lower by a factor of two or so than the sc:a]ing
law predicts, and too large an increase in loop length may actually cause the temper;f
ture to fall.

Now, in general, the conductive flux may not vanish at the temperature (T,) that is
f:hosen as the base of the loop. This means that the loop is not thermally isolaoted, and
it leads not only to more general expressions for the summit temperature than Equa-
tion (6.39), with the heating rate as an extra parameter, but also to the possibility of
thermal non-equilibrium and instability. These more general loop models are especially
useful if the loop base is taken at, say, 5 x 10° K, in view of the difficulties and uncer-
tainties in modelling the transition region. Starting at a value of,say,2 x 10*K for T
(rather than, say, 10° K) may give significant errors if Equation (6.32) describes the
transition-region physics inadequately. It would be invaluable to extend the models
down to the temperature-minimum region where the conductive flux vanishes, but
at such low temperatures, radiative transfer effects would have to be included anci
these introduce a coupling to the region below.

Numerical solutions for uniform-pressure loops have been found by many authors
including Hood and Priest (1979a), who treat the case when T, is 10° K and the healiné
is proportional to density: H = hn,. These solutions depend on the three parameters

/15w
2.04 2L =100Mm

( E:rit -Tcrit )

—

100 200 P/R

Fig. 6.10. The loop summit temperature (T,) as a function of the pressure (p) and half-length (L) for a
low-lying static coronal loop. P, is the pressure for a standard plasma of density 5 x 10'* m~? and tem-
perature 10° K. The solid (or dashed) curves are for mechanical heating ten (or five) times larger than
the radiation from the standard ‘plasma. The curves end at critical conditions (p,_,,, T....), indicated here
for _hot loops of length 100 000 km. The lower unstable solutions are also includee-:(i"t"orcigi.s loop; the star
indicates a thermally isolated loop and the dots show oscillatory solutions (from Hood and Prics;, 1979a).

HEATING OFgTHE UPPER ATMOSPHERE 239

L, p, h through just the two combinations Lp and h/p. (The base conductive flux can
be regarded as an alternative parameter to p, and in practice there may be some
limitation on the range of values of this flux which the atmosphere below T, can cope
with statically.) Some typical numerical results are shown in Figure 6.10. They suggest
explanations for many observed loops properties. For example, the fact that shorter
loops often appear brighter may be because they possess consistently higher heating
rates, or it may be caused by the higher pressures (p_,, ) that are allowed for shorter
loops. Furthermore, the relatively small variation in observed X-ray temperature
compared with pressure is clearly present in the results. In order to produce a temper-
ature range of 2.2 to 2.8 x 10 K typical of active-region loops, one requires a heating
rate that is between 10 and 15 times bigger than the standard radiation. Quiet-region
loops need a heating rate about half as big as this. For the above numerical modelling,
the energy balance Equation (6.32) was solved along a single magnetic field line, but
it has also been solved more generally in the two cases of a cylindrically symmetric
structure (Hood and Priest, 1979a) and a force-free arcade of loops (Priest and Smith
1979), as described in Sections 11.1.1 and 11.1.2.

Chiuderi et al. (1981) suggest that the observational errors in L, p, and T, are so
great that no meaningful information can yet be inferred about the heating processes.
Since the temperature profile is flat over most of a loop’s length, a good approximate
scaling law can be obtained by neglecting the radiative loss, in agreement with Roberts
and Frankenthal (1980).

6.5.1B. Cool Cores

A striking feature of the results in Figure 6.10 is that, as the loop pressure slowly
increases (with its heating and length held fixed), so the summit temperature (T,)
rises to a maximum and then decreases to a critical value (T, ) at which dT,/dp
becomes infinite and a catastrophe occurs, as indicated schematically in Figure 6.11.
If the pressure exceeds the value p_,, the loop is therefore in a state of thermal non-
equilibrium. There is no neighbouring equilibrium, and so the plasma cools along the
dotted line seeking a new equilibrium below 10° K. As it cools, much of the plasma is
likely to drain out of the loop, since it cannot all maintain hydrostatic¢ equilibrium at
lower temperatures. The existence of a lack of equilibrium and the consequent cooling
is also present when a loop is (slowly) stretched far enough at constant p and H or
when its heating is slowly decreased at constant p and L. It provides an explanation for
the existence of extremely cool cores (Section 1.4.1C) that Foukal (1975, 1976) and
Jordan (1975) have observed in some coronal loops. (In addition it may be the cause
of the sudden loop evacuation that Levine and Withbroe (1977) described.) In extreme
cases, Hood and Priest (1979a) propose this as the mechanism for creating active-
region filaments or prominences (Section 11.1.1). The idea that active-region filaments
are just stretched magnetic flux-ropes containing cool plasma is consistent with the
frequently reported observation of motions along filaments, presumably guided by
the magnetic field. The cool cores contain too much plasma to be in hydrostatic
equilibrium at such large heights, and so they must be dynamic. The cool plasma
may have been injected up as spicules, or its temperature may have decreased by
thermal instability.
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Rerit P

Fig. 6.11. The summit temperature (T,) for a static coronal loop shown schematically as a function
of its pressure (p). When p_, is reached, the plasma cools along the dotted line to a new equilibrium well
below T,

erit”

Another feature of the numerical solutions (Figure 6.10) is that thermally isolated
loops, in particular, are thermally unstable to perturbations that preserve the base
temperature (Antiochos, 1979; Hood and Priest, 1980a Chiuderi et al., 1981). This may
provide an explanation for the ceaseless activity of the solar atmosphere and, in
particular, for spicules. However, the loops are close to marginally stable conditions
with an extremely small growth-rate (Craig et al., 1982), although an adequate
coupling to the chromosphere has not yet been incorporated.

6.5.1C. Hydrostatic Equilibrium

For loops that are about a coronal scale-height or greater in vertical extent, the
pressure decreases substantially from the loop base to its summit, and so the full
equations (6.32) to (6.34) need to be solved. Wragg and Priest (1981a) have done so
for a loop that is an arc of a circle. The ratio of height to foot-point separation is
denoted by ;r, and the increase in cross-sectional diameter from base to summit is d.
Figure 6.12 gives the results for the summit temperature of thermally isolated loops
and shows the effect on the summit temperature of increasing the loop height or
divergence. See also Vesecky et al. (1979) and Serio et al. (1981). The latter have
modelled thermally isolated loops in hydrostatic equilibrium with a heating that
declines away from the base like exp ( — s/s,); they derive scaling laws and find that
loops longer than 2s,, develop a temperature minimum at the summit, which may be
relevant to prominence formation (Section 11.1).
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Fig. 6.12. Coronal loops in hydrostatic equilibrium. (a_} Thfjsummil 1empe'raturc (T,)as a funcll{on
of loop length (2L)in Mm ( = 10® m) and base density (n,)in m~ > for thermally isolated loops. The sca :rl:g
laws T, ~ (p, L)"'? for short loops and T, ~ py/? for long loops are shown dashled and dotted, re;p;;;n; y.
(b) The effect of loop geometry on the temperature profile of an lptcrconnectmf loop of 'Iength . rr:
and heating ki = 7. The ratio of loop height to footpoint separation is denoted by jr:r =0 givest t: unifor

pressure case, while r = 2.3 gives the loop of maximum heighf for a given L. (¢) The effect of loop Fiweégjnzc{;
on the temperature profile T(s) for a semicircular active-region loop of length 80 Mm and_ heating h = 20.

The ratio of summit diameter to base diameter is denoted by d. (From Wragg and Priest, 1981a.)
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6.5.2. FLOWS IN CORONAL LOOPS

For the most part the effect of flows in models of the solar atmosphere has been
neglected, and yet both steady and unsteady flows are universally present (Figure 1.23).
The present rudimentary state of the theory of such flows is summarised by Priest
(1981c) and observations of the many different types have been described in Section
1.4.1D. Ground-based observations reveal Evershed outflow (6 to 7km s~ '), Evershed
inflow (20 km s~ '), network downflow (0.1 to 2kms™!), surges (20 to 30 kms™ ),
spicules (20 to 30 km s~ !) and coronal rain (50 to 100 km s~ !). Space observations
show both transient, small-scale, fast flows (0 to 150 km s~ '), lasting for minutes or
less, and persistent, large-scale slow flows (2 to 10 km s~ !), lasting for an hour or more.

From a theoretical viewpoint there are several ways of generating a flow in a
coronal loop, which are briefly outlined in the remainder of this section (Figure 6.13).
Siphon flow would be driven by a pressure difference between the two footpoints.
It has been invoked by Meyer and Schmidt (1968) to explain Evershed motions along
low-lying photospheric and chromospheric loops, but it may also occur along coronal
loops. If one starts with a static loop and switches on a pressure difference,

an accelerated flow will be driven from the high-pressure footpoint. But, if one starts

with a loop containing a flow and then a small pressure difference is imposed in
opposition to the flow, it is possible for a decelerated flow to be set up towards the
higher pressure. There are several ways in which different footpoint pressures may be
maintained. For example, the constancy of total base pressure (plasma plus magnetic)
would imply that regions of high magnetic field strength possess a low plasma
pressure. Also, a converging photospheric flow could compress both magnetic field
and plasma, and so enhance the pressure locally. Again, a supergranular flow could
drive a downflow by viscous coupling in the intense tubes (Section 8.7) that make up
the boundary of a supergranule cell. Finally, the pressure at a loop footpoint may be
increased by enhancing the heating there.

Coronal siphon flow has been analysed by Cargill and Priest (1980) and Noci
(1981). A simple case is that of steady flow along a loop of uniform cross-section,
satisfying conservation of mass, momentum and energy in the form
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Fig. 6.13. The main types of flow in coronal loops are: (a) siphon flow, (b) spicule flow, (c) loop draining,
(d) loop filling.
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d dv dp d{p
1 (pv)=0; pv T 3; — Pg cos b, ds(py L

where s is the distance measured along a loop of length 2L and 6(s) is the local incli-
nation of a section of the loop to the vertical, so that for a semicircular loop 8 = ns/(2L).
The adiabatic law has been assumed for simplicity. Eliminating p and p between
the three equations and writing ¢ (s) as the sound speed yields

c2\dv s
(U—?)a= = COSE,
which is similar in form to the solar wind equations (Section 12.2) and possesses a
critical point (v = ¢,) at the loop summit (s = L). More general solutions for a varying
cross-sectional area and a full energy equation have also been produced (Cargill and
Priest 1982b). The main feature is that for small pressure differences the flow is
subsonic, but for larger pressure differences the flow becomes supersonic near the
loop summit and is then slowed down by a shock wave in the downflowing leg
(Figure 6.14).

The cause of spicular motions (Figure 6.13(b)), in which cool plasma is propelled
up a loop leg and then falls back down, has not yet been adequately explained. One
possibility is that they are driven by granular buffeting (Section 8.7.3), with a re-
sonance between the forcing granular motion at the edge of an intense magnetic
flux tube and the vertical plasma motion within the tube (Roberts, 1979). Alternatively,
a similar resonance may occur when wave motions within a supergranule cell im-
pinge on its boundaries, or spicules may be a result of a lack of thermal stability in
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Fig. 6.14. Thesiphon flow speed (v) at a distance s along a converging coronal loop of length 2L = 100 000
km (from Cargill and Priest, 1980).
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the loop plasma (Section 6.5.1B, Hood and Priest, 1980a).

Surges may be caused by the reconnection between newly emerging or evolving
satellite flux and the ambient sunspot field (Heyvaerts et al., 1977). Instead, they may
be the result of non-equilibrium, when the pressure within a closed magnetic structure
exceed a critical value.

Evershed flow may be evidence of siphon flow, or it may be a result of the interaction
between the convection rolls and the magnetic field within the penumbra of a sunspot.

Downflow in both legs of a loop (Figure 6.13(c)) may occur if there is a condensation
or prominence at the summit of the loop. It may, alternatively, be simply plasma that
is returning to the lower atmosphere from spicules and surges and it may be heated
adiabatically in the process (Poletto (1980) Ap.J. 240, L 69). Downflow may also
take place during the formation of cool cores as follows. Suppose a hot loop is stretched
(or its pressure increased or heating reduced) until critical conditions for thermal
non-equilibrium are reached. Plasma in the core of the loop near the summit will
then cool down. Since it is no longer in hydrostatic equilibrium, most of the cool
plasma will drain out of the core until a new hydrostatic equilibrium is reached.
Once a cool core is produced, small-scale magnetohydrodynamic instabilities may
drive a circulation of plasma from the ambient corona across the interface and into
the core where it falls down. The generation mechanism for this downflow may
instead operate in the photosphere rather than the corona. For example, super-
granular flow may drag plasma downwards in the network, or a downflow may be
associated with the transient formation of an intense tube by the intense magnetic
field instability (Section 8.7.2).

A final category of flow is upflow in both legs (Figure 6.13(d)), which may be part
of an overall circulation within a coronal arcade containing a quiescent prominence
(Section 11.1.2). It is also driven during the rise phase of a simple loop (or compact)
flare (Section 10.2), when the presence of an extra source of heating in the loop means
there is insufficient plasma for hydrostatic equilibrium, and so extra material is
sucked up from below. Another way of driving an upflow, for example above a sun-
spot, is by Alfvén or magnetosonic waves that are propagating upwards and dumping
their momentum as well as their energy in the plasma.
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Fig. 6.15. The evolution of a coronal loop from one equilibrium to another by means of an evaporation
or draining, depending on whether the heating rate (or loop length) increases or decreases in value.
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[_)raining or filling (i.e., evaporation) may also take place if a loop passes through a
series of equilibria with a different heating (H) or loop length (L). Suppose H or L
increases in value; then Equation (6.41) implies that the new equilibrium possesses a
higher density, and so extra material must be brought up (or evaporated) from below
along the loop (Figure 6.15). Similarly, if the heating or length are reduced in value,
there is too much plasma in the loop for equilibrium; some of it must drain down
until the pressure gradient balances gravity and all the energy terms balance.

There are' many other ways in which flows may arise. As the large-scale magnetic
field evolves through a series of largely force-free states in response to the motion
of the photospheric footpoints, it may occasionally find that the threshold for the
onset of a magnetohydrodynamic instability is passed (Section 7.5); instead, there may
be no magnetic equilibrium at all and a state of non-equilibrium arises (Section 6.4.4).



