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Introduc-on	  
•  Stars	  interact	  with	  their	  planets	  through:	  
–  gravita-on;	  
–  irradia-on;	  and	  	  
– magne-c	  fields;	  

•  I	  shall	  focus	  on	  	  the	  case	  of	  close-‐in	  planets	  (a	  <	  0.15	  
AU)	  around	  main-‐sequence	  late-‐type	  stars;	  

	  
•  I	   shall	   consider	   only	   some	   cases	   of	   interac-ons	   in	  
which	  magne-c	  fields	  play	  a	  relevant	  role.	  	  
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Different	  MHD	  regimes	  	  
•  In	  the	  Solar	  System,	  planets	  are	  in	  a	  region	  where	  the	  velocity	  of	  the	  solar	  

wind	  vw	  is	  greater	  than	  the	  local	  Alfven	  velocity	  vA	  (super-‐Alfvenic	  regime):	  
=>	  Bow	  shock	  at	  the	  magnetospheric	  boundary	  as	  in	  the	  case	  of	  the	  Earth;	  
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•  In	  the	  case	  of	  close-‐in	  planets,	  the	  planet	  is	  likely	  to	  be	  inside	  the	  Alfven	  radius	  of	  the	  
star	  where	  vw	  <	  vA	  (e.g.,	  Preusse	  et	  al.	  2005);	  

	  
•  Alfven	  waves	  excited	  by	  the	  planet	  orbital	  mo-on	  can	  travel	  down	  to	  the	  star	  (e.g.,	  

Preusse	  et	  al.	  2006,	  2007;	  Kopp	  et	  al.	  2011;	  Saur	  et	  al.	  2013).	  
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c±A = v ± vA,

where v is the velocity of
the plasma, vA = B/

√
µρ

the Alfven velocity, µ the
permeability of the plasma,
and ρ its density.

Image	  Credit:	  ESA	  



The	  Jupiter-‐Io	  analogy	  

The	  Alfven	  wing	  model	  
(e.g.,	  Neubauer	  1980;	  Saur	  et	  al.	  2013)	  

Image	  Credit:	  J.	  Spencer	  



Star-‐Planet	  Magne-c	  Interac-ons	  (SPMI)	  	  

•  I	  shall	  focus	  on	  a	  few	  observa-ons:	  
	  

–  chromospheric	  hot	  spots	  rota-ng	  in	  phase	  with	  a	  close-‐in	  planet;	  
	  
–  low	  chromospheric	  emission	  levels	  in	  systems	  with	  HJs;	  

	  

	  	  	  	  and	  consider	  some	  models	  proposed	  for	  their	  interpreta-on;	  	  
	  	  	  finally,	  I	  shall	  consider	  	  

	  
–  the	  possibility	  of	  photospheric	  ac-vity	  phased	  to	  a	  close-‐in	  planet.	  
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SPMI	  in	  the	  chromospheres	  of	  	  
HD	  179949	  and	  υ	  And	  

Different	  symbols	  refer	  to	  different	  epochs	  (Shkolnik	  et	  al.	  2005;	  
2001	  Aug:	  circles,	  2002	  Jul:	  squares;	  2002	  August:	  triangles;	  2003	  
Sept:	  diamonds)	   6	  



Chromospheric	  hot	  spots	  	  
•  Chromospheric	  hot	  spots	  rota-ng	   in	  phase	  with	  the	  planetary	  orbit	  have	  

been	  reported	  (Shkolnik	  et	  al.	  2003;	  2005;	  2008;	  Gurdemir	  et	  al.	  2012):	  
	  

–  The	  irradiated	  power	  is	  of	  the	  order	  of	  1020	  –	  1021	  W;	  	  
	  
–  There	  is	  a	  phase	  lag	  between	  planet	  inferior	  conjuc-on	  and	  maximum	  

hot	  spot	  visibility;	  	  
	  
–  Planet-‐induced	  hot	  spots	  are	  not	  steady	  	  as	  	  they	  are	  observed	  only	  in	  

≈	  30-‐50	  percent	  of	  the	  seasons	  (Shkolnik	  et	  al.	  2008);	  
	  
–  HD	   179949	   and	   υ	   And	   show	   the	   best	   examples	   (see,	   however,	  

Poppenhaeger	  et	  al.	  2011;	  Scandariato	  et	  al.	  2013);	  

–  Some	   authors	   have	   ques-oned	   the	   reality	   of	   the	   phenomenon	   (e.g.	  
Miller	  et	  al.	  2012).	  
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Very	  low	  ac-vity	  in	  some	  stars	  with	  	  
transi-ng	  Hot	  Jupiters	  

•  Fossa-	  et	  al.	  (2013)	  no-ced	  the	  very	  low	  values	  of	  the	  chromospheric	  emission	  of	  some	  transi-ng	  	  HJs.	  	  

The Astrophysical Journal Letters, 766:L20 (6pp), 2013 April 1 Fossati et al.

Figure 2. WASP-12 (blue triangle) in B − V vs. log R′
HK plane, compared with stars with B −V < 1.0 observed by Wright et al. (2004, squares), Jenkins et al. (2006,

2008, 2011, stars), and Knutson et al. (2010, red pluses). Color and activity indices adopted for WASP-12 are those given by Knutson et al. (2010). Circles indicate
positions of planet hosting stars X0-4, CoRoT-1, WASP-13, WASP-17, and WASP-18 (see Section 4). The dotted line indicates the minimum activity value within the
Wright et al. (2004) sample, accounting for contamination by subgiants (Wright 2004).
(A color version of this figure is available in the online journal.)

(∼650 pc). We estimated the fundamental parameters by com-
paring observed hydrogen line profiles (Hα, Hβ, Hγ , and
Hδ) with synthetic spectra calculated with the SYNTH3 code
(Kochukhov 2007), utilizing LLmodels model atmospheres
(Shulyak et al. 2004). We obtained: Teff ∼ 10,700 K, log g ∼
4.25, and υ sin i ∼ 120 km s−1.

Narrow ISM absorption lines are clearly visible in
HD257926’s Ca ii H and K and Na i D1 and D2 lines: see
Figure 3 (top-left panel) for Ca ii K. Each doublet member shows
at least two ISM velocity components. For conciseness we focus
on the higher S/N ESPaDOnS spectrum, but the FIES spectrum
provided comparable results. We removed the stellar contribu-
tion using a synthetic spectrum, and fitted multiple Gaussians to
the residual ISM absorptions. Table 2 lists the equivalent widths
of the ISM lines. We calculated synthetic ISM line profiles for
a range of “b” parameters (characterizing thermal and turbulent
line broadening) and column densities, and for each b value
determined the column density that reproduced the observed
equivalent width. For Ca ii, we then compared the derived H
and K column densities, and determined the b value for which
the two column densities agreed. We proceeded in the same
way for the Na i D lines. In all cases we allowed the two Gaus-
sian profiles to have variable widths. Our conclusions were not
significantly affected by these choices.

Table 2
ISM Properties Derived from HD257926

Ca ii K Ca ii H Na i D1 Na i D2

υr-blue +1.8 ± 0.1 +2.0 ± 0.2 +4.2 ± 0.2 +4.2 ± 0.2
υr-red +17.3 ± 0.2 +18.0 ± 0.2 +17.0 ± 0.1 +16.9 ± 0.1
FWHMblue 10.0 ± 0.2 9.8 ± 0.5 8.0 ± 0.5 10.5 ± 0.5
FWHMred 11.7 ± 0.3 10.4 ± 0.7 9.3 ± 0.2 10.1 ± 0.2
EQWblue 82 ± 2 56 ± 2 35 ± 2 79 ± 4
EQWred 79 ± 2 48 ± 3 182 ± 2 212 ± 3
log Nblue 12.2 ± 0.1 11.6 ± 0.1
log Nred 12.1 ± 0.1 12.8 ± 0.1
log NSS96 9.79 11.37
log NSun 13.52 12.25

Notes. Radial velocity (υr, in km s−1), full width at half-maximum (FWHM, in
km s−1), equivalent width (EQW, in mÅ), and column density (in cm−2) of the
Ca ii H and K and Na i D1 and D2 ISM velocity components (“blue” and “red”),
measured in HD257926. The final two rows list total Ca ii and Na i column
densities derived for average ISM conditions and the WASP-12 reddening,
assuming either the gas-phase ISM abundances of Savage & Sembach (1996,
SS96) or the solar abundances of Asplund et al. (2009; see text).
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Absence	  of	  emission	  in	  the	  cores	  of	  
chromospheric	  resonance	  lines	  	  

The Astrophysical Journal Letters, 766:L20 (6pp), 2013 April 1 Fossati et al.

Figure 1. Comparison between the Ca ii H and K line profiles (right and left panels, respectively) of WASP-12 and HAT-P-7 (upper panels) or WASP-12 and WASP-1
(lower panels). Horizontal bars indicate spectral windows used to normalize the flux profiles. Short vertical lines in the right panels mark the location of hydrogen
Hε. The per pixel uncertainties are of the order of 3%. The lower panel within each plot shows the ratio of the spectra with WASP-12’s as the numerator. In each case
WASP-12 has extra absorption throughout the inner ∼4 Å of the line profile.
(A color version of this figure is available in the online journal.)

(NOT) to obtain high-resolution spectra of three early-type
stars (HD257926, HD258049, HD258439) lying within 20′ of
WASP-12, and at about the same distance. We observed hot
stars for three reasons: (1) they are brighter than WASP-12 at
the same distance, allowing high-S/N measurements; (2) they
are typically fast rotators, simplifying identification of the sharp
ISM absorptions; and (3) they do not exhibit stellar activity,
which might otherwise affect interpretations of the Ca ii H and
K lines.

The ESPaDOnS spectra cover 3700–10400 Å, with a
resolving power of 80,000 in the “star only” instrumental con-
figuration, while the FIES spectra cover 3700–7400 Å, with a
resolving power of 67,000. The spectra revealed that HD258049
is a spectroscopic binary, while HD258439 is a chemically
peculiar star (possibly magnetic), and therefore less straight-
forward to model. For this reason we focused on HD257926,
apparently a chemically normal early A-type star. It lies 15.′7
away from WASP-12 on the sky, at about twice the distance

3

In	  WASP-‐12,	  the	  Ca	  II	  K	   line	  (and	  the	  Mg	  II	  h	  &	  k	   lines	  as	  well)	  have	  zero	  flux	  in	  the	  
core.	   Interstellar	   absorp-on	   should	   be	   about	   one	   order	   of	   magnitude	   larger	   than	  
generally	  found	  in	  the	  star	  direc-on	  to	  account	  for	  this	  (Haswell	  et	  al.	  2012;	  Fossa-	  et	  
al.	  2013).	  	  
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The WASP-12 system is 
shrouded in diffuse gas 

    

Haswell et al  2012 

The stellar disc is obscured 
at all observed phases. 

Carole Haswell The Open UniversityPLATO 2.0 mtg July 2013 

The Astrophysical Journal, 760:79 (23pp), 2012 November 20 Haswell et al.
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Figure 15. Results of applying our line identification procedure to the deviating
point at 2806.933 − T 5500 Å. The two sets of points correspond to 3000 K
and 5500 K. This makes it clear that the results of our line identifications
depend on the temperature as well as the abundance pattern assumed for the
absorbing gas.

particularly in the NUV. If, on the other hand, we were to
assume that vanadium is abundant in WASP-12 b’s exosphere
and we arbitrarily increased the vanadium abundance to match
that of iron in WASP-12’s photosphere, we would introduce a
significant change to our assessment of the line identification.
The open red triangles in Figure 14 show the results we obtain if
we adopt this assumption. In this case, we identify V ii and V i as
the species most likely to be responsible for the enhanced transit
depth. It is worth noting that VO has been widely discussed
as a possible constituent of the stratospheres of hot Jupiter
exoplanets (e.g., Desert et al. 2008; Spiegel et al. 2010; Fortney
et al. 2010), and it is possible that the gases lost from the upper
atmosphere of a hot Jupiter could have enhanced vanadium
abundances.

Figure 15 shows an example of how the imputed line differs
for values of 3000 K and 5500 K in Pχ , both plausible values
for the exosphere of WASP-12. None of our clear identifications
changed between these two temperatures, but we note that we
have not included the temperature dependence of the ionization
balance in our assessments.

Figures 14 and 15 show that our line identifications depend on
the assumptions we make. This is generally true in astrophysics,
but in more mature fields, we have a sound basis for confidently
adopting likely assumptions. For example, we have a very good
understanding of the physical conditions prevailing in stellar
atmospheres, and much high S/N data have been used to hone
models such as the one we plotted in Figures 1 and 11. The
study of hot Jupiter exospheres is not so well developed.

To be sure of all line identifications in WASP-12 b and
other hot Jupiters, we need sound assumptions for the likely
abundances in the absorbing material, and measurements of
its physical properties. Hot Jupiter atmospheres probably have
prodigious winds and disequilibrium chemistry which will affect
the abundances of the exospheric material (e.g., Moses et al.
2011). The models have many degrees of freedom, and for
WASP-12 b constraining them will be challenging, as the system
is relatively distant (380 ± 85 pc; Fossati et al. 2010a) and
hence at the limit of what we can do with HST/COS. WASP-
12 b is roughly the most distant exoplanetary system for which
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HD 102634: Teff=6223 K, Age=2.6 Gyr, Vsini=6.6 km/s
HD 107213: Teff=6166 K, Age=2.2 Gyr, Vsini=10.0 km/s
Procyon: Teff=6592 K, Age=1.7 Gyr, Vsini=3.9 km/s
WASP-12: Teff=6250 K, Age=2.0 Gyr, Vsini<4.6 km/s

Figure 16. Our Visit 1 NUVC coverage of the cores of the Mg ii resonance lines
compared with those of three other stars (see the text). The cores of the WASP-
12 lines show no emission whatsoever and are suggestive of narrow absorption
components that reduce the flux in the cores of these lines to zero. WASP-12 is
remarkable in the appearance of its Mg ii resonance line cores.

NUV transit observations can realistically be obtained with
technology available in the foreseeable future. The best chance
to put our understanding of hot Jupiter exospheres on a firm
foundation would be to observe the two brightest hot Jupiters,
HD 209458 b and HD 189733 b in the NUV. In some cases,
however, we already have robust identifications of spectral lines
exhibiting enhanced transit depths in WASP-12 b, for example
for the Mg ii resonance lines.

3.5. Chromospheric Activity in WASP-12 and
Tenuous Gas Surrounding the System

Our HST/COS data raise questions concerning stellar activity
in WASP-12. Can we attribute the high point at phase φ = 0.95
in the Visit 2 light curves to stellar activity as we speculated in
Section 3.3? Fossati et al. (2010a) found an age of 1.0–2.65 Gyr
for WASP-12, and an effective temperature of Teff = 6250 ±
100 K, in agreement with Hebb et al. (2009) but with tighter
uncertainties. Generally, stars of this Teff and age are expected
to exhibit activity, and emission cores in the Mg ii resonance
lines are one clear observable consequence of this. As Figure 16
demonstrates, however, Mg ii emission cores are conspicuously
absent in WASP-12.

To produce Figure 16, we normalized the spectra of WASP-12
and two stars of the same age and Teff to match the flux in the far
wings of the Mg ii lines (the regions used in the normalization
are further from the line cores than the edges of Figure 16).
These two stars, HD 102634 and HD 107213, are plotted in red
and green in Figure 16. As expected for such similar stars, the
line profiles of WASP-12, HD 102634, and HD 107213 match
well throughout the profile of the Mg ii lines, except within about
10 Å of either of the line cores, where WASP-12’s spectrum lies
below the others. Figure 16 also shows Procyon, which is a
commonly used reference star, slightly hotter, slightly younger,
and more slowly rotating (v sin i = 3.9 km s−1; Schroder et al.
2009) than the other three objects. Procyon is noted for its low
stellar activity. Procyon, HD 102634, and HD 107213 all have
very similar line profiles between 2792 Å and 2807 Å, with
similar emission cores in all three cases surrounded by fairly
steep declines in flux toward the line cores, with very similar

16
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Open	  ques-ons	  to	  be	  addressed	  by	  
the	  models	  	  

	  
•  Why	  are	  chromospheric	  hot	  spots	  shimed	  with	  respect	  to	  the	  

phase	  of	  planetary	  conjuc-on	  ?	  

•  What	   is	   the	   physical	   process	   responsible	   for	   the	   energy	  
dissipated	  in	  hot	  spots	  ?	  

	  
•  What	  is	  producing	  the	  low	  level	  of	  chromospheric	  emission	  in	  

some	  stars	  with	  transi-ng	  HJs	  ?	   Is	   it	  circumstellar	  absorp-on	  
or	  is	  the	  stellar	  ac-vity	  level	  intrinsically	  very	  low	  (as	  found	  by	  
Pillioeri	  et	  al.	  2014b	  in	  WASP-‐18;	  see	  S.Wolk’s	  talk)	  ?	  	  
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Simple	  magne-c	  field	  models	  

•  Lanza	  (2008,	  2009,	  2012,	  2013)	  has	  developed	  simple	  
magne-c	  field	  models	  for	  stars	  with	  close-‐in	  planets;	  

	  
•  They	  assume	  that:	  

a)  gravity	  and	  plasma	  pressure	  are	  negligible	  in	  comparison	  	  
to	  the	  Lorentz	  force;	  

b)  vplasma	  <<	  vAlfven	  	  (negligible	  ram	  pressure);	  
c)  the	  system	  is	  sta-onary	  (	  =>	  force-‐free	  fields).	  
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Force-‐free	  fields	  

∇×B = αB (1)

B ·∇α = 0 (2)

∇2B+ α2B = 0 (3)

B = ∇×A (4)

L = J×B = µ−1(∇×B)×B (5)

J = µ−1∇×B (6)

1

∇×B = αB (1)

B ·∇α = 0 (2)

∇2B+ α2B = 0 (3)

B = ∇×A (4)

L = J×B = µ−1(∇×B)×B (5)

J = µ−1∇×B (6)

1

∇×B = αB (1)

B ·∇α = 0 (2)

∇2B+ α2B = 0 (3)

B = ∇×A (4)

L = J×B = µ−1(∇×B)×B (5)

J = µ−1∇×B (6)

If L = 0 then ∇×B = αB (7)

1

Taking	  the	  divergence	  of	  both	  sides	  of	  the	  above	  equa-on:	  

∇×B = αB (1)

B ·∇α = 0 (2)

∇2B+ α2B = 0 (3)

B = ∇×A (4)

L = J×B = µ−1(∇×B)×B (5)

J = µ−1∇×B (6)

If L = 0 then ∇×B = αB (7)

1

Therefore,	  α	  is	  constant	  along	  each	  given	  field	  line.	  	  	  

(current	  density)	   (Lorentz	  force	  per	  unit	  volume)	  
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•  There	  are	  two	  different	  possible	  configura-ons:	  
	  

•  Interconnec-ng	   configura-ons	   (poten-al	   magne-c	   fields);	  
[lem]	  

	  
•  Topologically	   separated	   star-‐planet	   flux	   systems	   (with	  
possibility	  of	  magne-c	  reconnec-on);	  [right]	  
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A	  force-‐free	  field	  model	  

A	   linear	   force-‐free	   field	  model	   for	   HD	   179949	  with	   twisted	   field	   lines	   (Lanza	   2008,	  
2009)	   that	   can	  account	   for	   the	  phase	   lag	  of	   the	  hot	   spot.	   Linear	   f-‐f	  fields	   (i.e.,	  with	  
constant	   α)	   are	   minimum-‐energy	   configura-ons	   for	   given	   magne-c	   helicity	   (e.g.,	  
Berger	  1985).	  



Some	  axisymmetric	  field	  
configura-ons	  	  

There	  	  are	  par-cular	  minimum-‐energy	  configura-ons	  that:	  	  
a)  have	   field	   lines	   that	   do	   not	   connect	   the	   planet	   with	   the	   star	   =>	   the	   energy	  

dissipated	  by	  reconnec-on	  is	  not	  conveyed	  to	  the	  star;	  and	  	  
b)  can	  store	  evaporated	  plasma	  in	  a	  torus	  around	  the	  star	  thus	  accoun-ng	  for	  the	  

absorp-on	  suggested	  by	  Fossa-	  et	  al.	  (2013),	  at	  least	  qualita-vely.	  	  

A&A 544, A23 (2012)

Table 2. Linear axisymmetric force-free fields.

Name B0 Bp0 |α| b0/c0 θ0 ∆φ Phel Prec

(G) (G) (R−1) (deg) (deg) (1020 W) (1020 W)
HD 179949 10 100 0.5 −0.3 40.0 129.23 0.09 0.61
HD 189733 40 100 0.5 −0.4 20.0 110.99 0.68 3.10
υ And 10 100 0.2 −1.1 32.5 177.1 0.05 0.01
τ Boo 10 100 0.5 −0.5 32.0 120.0 0.05 0.10

Fig. 2. Meridional section of the linear force-free magnetic field cor-
responding to the parameters assumed for HD 179949 in Table 2. Note
the rope of azimuthal flux symmetric with respect to the equator and the
position of the planet indicated by the filled dot on the equatorial plane
(z = 0). The field line connecting the planet to the stellar surface is out-
side the flux rope while the field lines of the rope close onto themselves
without reaching the stellar surface.

The dissipated powers listed in Table 2 can be compared
with the observations of HD 179949 and υ And that give pow-
ers of ≈1020 and ≈(2−3) × 1019 W, respectively (Shkolnik et al.
2005), i.e., about two orders of magnitude larger than Phel and
one order of magnitude larger than Prec as predicted by our
model. Since the dissipated power scales as B4/3

0 B2/3
p0 , to get Prec

of the order of 1020 W, we should have B0 ∼ 30−50 G, which
is indeed the case for HD 189733 which is therefore the sys-
tem with the highest predicted effect. The reason why there have
been no conclusive observations of SPMI for this system may
be its complex magnetic field topology with a predominance of
non-axisymmetric components (cf. Moutou et al. 2007; Fares
et al. 2010) which lead to a complicated time dependence of
the dissipated power (cf. Sect. 2.9.2). However, the possibil-
ity of a flaring activity modulated with the orbit of the planet
in HD 189733 may indicate a remarkable SPMI in this system.

Note that Phel < Prec in all of our linear force-free mod-
els. This indicates that the neglect of the surface term dΣ/dt
in Eq. (17), rigorously speaking, is not justified. The contribu-
tion of this term, however, is of the same order of magnitude of
the power dissipated by the reconnection of the planetary and

stellar fields, thus its inclusion is not expected to change our
conclusions.

An important constraint on the magnetic field model is pro-
vided by the lag between the planet and the phase of maxi-
mum visibility of the chromospheric hot spot. Shkolnik et al.
(2005) found that the maximum chromospheric emission falls
at phase ∼0.7−0.8 in the case of HD 179949 and at phase ∼0.5
in the case of υ And, where phase 0 corresponds to the inferior
conjunction of the planet. In the case of τ Boo, Walker et al.
(2008) found a phase of maximum activity around ∼0.7−0.8,
while for HD 189733 Shkolnik et al. (2008) suggest a pos-
sible enhancement of the intra-night chromospheric variability
with a phase lag of ≈0.8. These values correspond to angles
of ∼80◦−120◦ for HD 179949, τ Boo, and HD 189733, and
of ∼180◦ in the case of υ And. The ∆φ values derived from
our models with |α| = 0.5R−1 are at the upper bounds of those
ranges for the first three stars, but are incompatible with the
lag observed in υ And. For this star, we cannot increase |α| be-
yond 0.2R−1, otherwise it becomes impossible to reproduce the
observed phase lag. As a consequence of the smaller |α|, we have
a remarkable reduction of the dissipated powers.

3.3. Non-linear force-free fields

Here we limit ourselves to the axisymmetric fields discussed by
Wolfson (1995). A meridional section of the magnetic field lines
in the case of HD 179949 is plotted in Fig. 3 for n = 0.5. The
eigenvalue corresponding to n = 0.5 is λ2 = 0.82343. Note that
this case gives also a good approximation to the more complex
non-linear field of Flyer et al. (2004) with k = 5 in the radial
range of interest for star-planet interaction. In Table 3 we list,
from the left to the right, the name of the system, the colati-
tude θ0 of the footpoint of the field line joining the stellar surface
with the planet as given by Eq. (47), the azimuthal angle ∆φ be-
tween the footpoint and the planet as given by Eq. (48), and the
energy dissipation rates Phel and Prec as derived from Eqs. (45)
and (8), respectively, with B0 = 10 G in all the cases with the ex-
ception of HD 189733 for which B0 = 40 G. The planetary field
strength Bp0 = 100 G in all the cases to maximize the energy dis-
sipation rate as in the case of linear force-free fields. Assuming
Bp0 = 15 G – a much more realistic value in view of the mod-
els of Reiners & Christensen (2010) for planets with ages of at
least 1−2 Gyr, and the field observed in Jupiter – the given pow-
ers are reduced by a factor of ∼3.7. The variation of αBφ across
the planetary magnetosphere does not exceed 5 percent in all the
cases, thus our assumption of a constant coronal field over the
volume of the planetary magnetosphere is well justified.

For n = 0.25 (λ2 = 1.01203), Phel is a factor of 2.4 larger,
but is still insufficient to account for the observations, while the
ratio Phel/Prec ranges from 2.8 to 3.5. However, n = 0.25 gives a
better agreement with the observed phase lags, because in all the
cases ∆φ ranges between 68.◦1 and 69.◦7 with θ0 between 57.◦9
and 60.◦7. We can decrease n up to, say, n = 0.1, because for this
value the variation of αBφ across the planetary magnetosphere
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Fig. 3. Meridional section of the non-linear force-free magnetic field of
Wolfson (1995) with n = 0.5 for the case of HD 179949. The filled dot
indicates the close-in planet assumed to be on the equatorial plane of
the star (z = 0) that is marked by the dashed line.

Table 3. Non-linear axisymmetric force-free field for n = 0.5.

Name θ0 ∆φ Phel Prec

(deg) (deg) (1019 W) (1019 W)
HD 179949 40.13 53.99 1.23 0.44
HD 189733 38.66 54.51 1.04 0.39
υ And 36.28 55.27 0.35 0.14
τ Boo 40.78 53.75 0.38 0.13

reaches ∼60 percent making our formula only roughly valid.
However, even in this extreme case, Phel increases by a factor
of 4.4 with respect to the case with n = 0.5 and this is in the best
case only marginally compatible with the observations.

We conclude that the non-linear force-free field of Wolfson
(1995) cannot account for the dissipated powers observed in our
systems, even for extreme values of the planetary magnetic field.
For HD 179949, τ Boo, and HD 189733, it can account for the
phase lag between the planet and the chromospheric hot spot
if n = 0.25, but in the case of υ And the predicted lag is too
small. An insufficient dissipated power is expected also in the
case of the more general non-linear models of Flyer et al. (2004)
because the Low & Lou models give a fairly good approxima-
tion to them in the radial range considered for the star-planet
interaction.

4. Discussion and conclusions

We have introduced an approximate model to compute the en-
ergy dissipated in the interaction between the magnetic field of
a star and a close-in planet. Our model assumes that the orbital
velocity of the planet is much smaller than the Alfvén speed in
the stellar corona and that the coronal field perturbed by the mo-
tion of the planet relaxes to its minimum energy state within
a timescale comparable with the Alfvén transit time along the

coronal field lines. With these assumptions, we can treat the evo-
lution of the field as a sequence of magnetostatic configurations
and estimate the energy variations under the constraint that the
total magnetic helicity of the field is conserved.

We have estimated the power dissipated by magnetic recon-
nection as well as that released by the modulation of the field he-
licity associated with the orbital motion of the planet. The latter
process can operate also when the planetary field is very small or
even absent because what is needed is a relative velocity between
the planet and the coronal field of the star. If the planetary field
Bp0 = 0, we can assume that the radius of the planetary magneto-
sphere corresponds to the radius of the planet, i.e., Rm = Rp and
apply, e.g., Eq. (45) simply substituting B4/3B2/3

p0 R2
p with B2R2

p.
When a planetary dipolar field is present, we find that the

dissipated power scales as R2
pB4/3

0 B2/3
p0 , with B0 the surface field

of the star. This is a general result, independent of the specific
mechanism responsible for the magnetic energy dissipation, pro-
vided that the dissipated power is proportional to the available
magnetic energy, that scales as B2

0, and the surface of the plane-
tary magnetosphere, that scales as B−2/3

0 B2/3
p0 R2

p. This scaling law
may be used to infer the relative planetary field strength, not yet
directly observable, from the measurement of the power of the
SPMI in a sample of stars, as suggested by Scharf (2010).

An important conclusion of our model is that, while the re-
connection of the stellar and planetary fields releases an addi-
tional power in the corona that can lead to an excess X-ray emis-
sion, this is not the case for the energy released by the helicity
variation that produces a modulation of the dissipation of the en-
ergy already available for the coronal heating or flaring. Since
the power released by the reconnection is generally of the or-
der of 1017−1018 W, this can explain the recent results of Canto
Martins et al. (2011) or those of Poppenhaeger et al. (2010) that
suggest at the most a marginal correlation of the stellar X-ray
emission with the mass and the inverse orbital semimajor axis of
the planet. On the other hand, a modulation of the coronal flar-
ing activity with the orbit of the planet, as suggested by Pillitteri
et al. (2011), is predicted by our model. Concerning the corre-
lation found by Hartman (2010), the range spanned by the stel-
lar chromospheric emission versus the planetary surface grav-
ity covers approximately one order of magnitude. This appears
to be too large to be accounted for by the energy released by
the interactions considered in our model and requires a different
explanation.

The time modulation of the chromospheric or X-ray emis-
sion predicted by our model has a single frequency, equal to
the orbital frequency of the planet, only if the stellar magnetic
field is predominantly axisymmetric, as expected when the star
is close to the minimum of its activity cycle by analogy with the
Sun. When the stellar field has a non-axisymmetric component
comparable or larger than the axisymmetric one, the modula-
tion becomes multiperiodic with frequencies coming from the
combination of the orbital and stellar rotation frequencies and
their harmonics, which makes the modulation virtually indistin-
guishable from the intrinsic activity fluctuations of the star. This
may explain why in some seasons the chromospheric signature
of the SPMI has not been observed in stars that had previously
shown some evidence of modulation with the orbital period.

Models of the SPMI based on stellar linear force-free fields
allow us to treat both the case of axisymmetric and non-
axisymmetric fields with an analytical description. However, the
power released, even assuming the extreme values allowed for
the free parameters, is insufficient by at least one order of mag-
nitude. This is related to the existence of an upper bound for the
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Meridional	   sec-ons	   of	   HD	  
179949	   model	   fields;	  
Linear	   f-‐f	   field	   with	   an	  
azimuthal	   flux	   rope	   (lem);	  
or	   non-‐linear	   f-‐f	   field	  
(right;	  Lanza	  2012).	  	  
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Magne-c	  reconnec-on	  power	  

	   	   	   	  where	  0	  <	  γ	  <	  1	  depends	  on	  the	  rela-ve	  angle	  between	  reconnec-ng	  field	  
lines,	   μ	   is	   the	   permeability	   of	   the	   vacuum,	   and	   vrel	   the	   rela-ve	   velocity	  
between	  the	  interac-ng	  field	  lines;	  

	  
•  es-mated	  dissipated	  powers	  Pd	  ≈	  1017-‐1019	  W	   	  for	  Bpl	  =	  10	  G,	  B*	  ≈	  10-‐40	  G,	  

Rm	  	  ≈	  4-‐5	  Rp,	  vrel	  ≈	  vorb	  ≈	  	  100-‐200	  km/s	  (Lanza	  2009,	  2012);	  	  	  

•  similar	  powers	  are	  obtained	  with	  the	  Alfven	  wing	  model	  (e.g.,	  Zarka	  2007;	  
Saur	  et	  al.	  2013);	  	  

	  
•  They	   are	   short	   of	   2-‐3	   orders	   of	   magnitude	   to	   account	   for	   the	   hot	   spot	  

emission.	  	  
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the field to open up all its lines of force out to infinity driving a
plasma outflow similar to a solar coronal mass ejection.

From a topological point of view, the fields obtained from
Eqs. (3) can be classified into two classes. If the function g(q)
decreases monotonously in the interval q0 ≤ q ≤ qL, all field
lines are anchored at both ends on the boundary r = R. On the
other hand, if the function has a relative minimum (and a relative
maximum) in that interval, the field contains an azimuthal rope
of flux located entirely in the r > R space and running around the
axis of symmetry. The magnetic field configurations considered
by Lanza (2008) to model SPMI are of the first kind; an example
of a field configuration containing an azimuthal flux rope will be
discussed in Sect. 4.2. An analogous topological classification
holds in the case of the nonlinear force-free fields considered by
Flyer et al. (2004).

The photospheric magnetic field components can be mea-
sured by means of spectropolarimetric techniques if the star ro-
tates fast enough (v sin i ≥ 10–15 km s−1) as shown in the case
of, e.g., τ Boo by Catala et al. (2007) and Donati et al. (2008).
Therefore, Eqs. (4) can be applied to derive the parameters of the
coronal field model and its topology, by assuming that the field
is force-free down to the photosphere, as we show in Sect. 4.2.

4. Applications

In this section we consider some applications of the above model
for the stellar coronal field to the phenomena introduced in
Sect. 2.

4.1. Power dissipated in SPMI

The power needed to explain the excess flux from a chromo-
spheric hot spot or an X-ray emission synchronous with the
planet is of the order of 1020–1021 W. Magnetic reconnection
between the stellar coronal field and the planetary field at the
boundary of the planetary magnetosphere is not sufficient to ac-
count for such a power, as we show in Sect. 4.1.1. Therefore,
we propose an interaction mechanism that may be capable of
sustaining that level of power in Sect. 4.1.2.

4.1.1. A simple magnetic reconnection model

The first mechanism proposed to account for the energy budget
of SPMI is reconnection between the planetary and the stellar
magnetic fields at the boundary of the planetary magnetosphere.
This boundary is characterized by a balance between the mag-
netic pressure of the coronal field and the planetary field. The
ram pressure is negligible because the planet is inside the region
where the stellar wind speed is subalfvenic (cf., e.g., Preusse
et al. 2005), and the orbital velocity of the planet is about one or-
der of magnitude lower than the Alfven velocity (Lanza 2008).
Therefore, assuming a planetary field with a dipole geometry,
the radius of the planetary magnetosphere Rm, measured from
the centre of the planet, is given by

Rm = Rpl

[
B(a, π2 )

Bpl

]− 1
3

, (7)

where Rpl is the radius of the planet, B(a, π2 ) is the coronal field
of the star on the stellar equatorial plane at r = a, and Bpl is the
magnetic field strength at the poles of the planet.

We specify our considerations for the SPMI model
of HD 179949 developed by Lanza (2008) that assumes

Fig. 1. The modulus of the magnetic field on the equatorial plane of the
star normalized to its value at the surface vs. the radial distance from the
star for b0/c0 = −1.1 and α = −0.12 R−1 (solid line). For comparison,
we also plot the case of a potential field (dotted line) and of a field
decreasing as r−2 (dashed line).

b0/c0 = −1.1 and α = −0.12 R−1 to explaining the phase lag
between the chromospheric hot spot and the planet. The mag-
netic field intensity vs. the distance from the star is plotted in
Fig. 1. The field strength decreases as that of a potential dipole
field close to the star, i.e., where g(q) ∼ q0/q (cf. Sect. 3), then it
decreases more slowly for r > (6–7) R because the decrease of
g(q) becomes less steep (cf., e.g., Fig. 3).

At the distance of the planet, i.e., a = 7.72 R, the field is
reduced by a factor of ∼300 with respect to its value at the stellar
surface. Assuming a mean field at the surface B0 = 10 G (cf.
Donati et al. 2008), the field at the boundary of the planetary
magnetosphere is B(a, π2 ) ∼ 0.03 G. Adopting a planetary field
Bpl = 5 G (cf., e.g., Grießmeier et al. 2004) and a radius of the
planet equal to that of Jupiter, we find Rm ∼ 5.5Rpl = 3.8×108 m.
The power dissipated by magnetic reconnection can be estimated
as

Pd & γ
π

µ

[
B
(
a,
π

2

)]2
R2

mvrel, (8)

where 0 < γ < 1 is a factor that depends on the angle between
the interacting magnetic field lines (see, e.g., Priest 2003), and
vrel is the relative velocity between the planet and the stellar coro-
nal field. Adopting the parameters for HD 179949 and γ = 0.5,
we find Pd & 1.3 × 1017 W, which is insufficient by at least
a factor of 103. Since Pd ∼ B4/3B2/3

pl , to explain the observed
power the stellar surface field should be increased to B0 ∼ 180 G,
which is too high in view of the mean values measured at the sur-
face of τ Boo (Donati et al. 2008), which is a faster rotator than
HD 179949, but with a comparable X-ray luminosity (Kashyap
et al. 2008). Christensen et al. (2009) suggest that the surface
field of hot Jupiters may be up to 5–10 times stronger than that
of Jupiter. However, if we adopt Bpl = 75 G and consider the
B2/3

pl dependence, we obtain a power increase by only a factor
of 6.
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Interconnec-ng	  loops	  
•  When	  the	  field	  of	  the	  star	  is	  close	  to	  a	  poten-al	  configura-on	  (e.g.,	  close	  

to	   the	  minimum	   of	   the	   ac-vity	   cycle),	   the	   forma-on	   of	   interconnec-ng	  
loops	  between	  the	  planet	  and	  the	  star	  is	  favoured	  (e.g.,	  Lanza	  2013);	  	  

	  
•  The	   stress	   induced	   by	   the	   orbital	   mo-on	   of	   the	   planet	   makes	   a	   large	  

power	  available,	  up	  to	  1020-‐1021	  W:	  	  

	  
	  
	  
	  	  where	  fAP	  is	  the	  frac-on	  of	  the	  planet	  surface	  covered	  by	  the	  interconnec-ng	  

field	   lines	   (usually	   fAP	  ≈	  0.1-‐0.2;	  Adams	  2011),	  Bp	   the	  planet’s	  polar	  field,	  
and	  v0	  ≈	  vorb	  the	  rela-ve	  velocity	  between	  the	  loop	  footpoints;	  	  

	  
•  In	   principle,	   the	   available	   power	   is	   enough	   to	   account	   for	   hot	   spot	  

emission.	  
	  

	  

A. F. Lanza: Star-planet magnetic interaction and evaporation of planetary atmospheres

where ρ0 is the coronal density at the footpoint of the field line,
εrot ≡ Ω2R3

s/(2GMs) the ratio of the centrifugal to the gravita-
tional potential on the equator of the star, andΦ0 the potential at
the footpoint of the field line on the stellar surface. Equation (6)
assumes that the velocity vanishes at the footpoint of the field
line.

3.2. Interaction between stellar and planetary fields

When the stellar field is in a force-free non-potential state, it
interacts with the planetary field at the boundary of the plane-
tary magnetosphere that is the surface of discontinuity between
the two fields as discussed in Sect. 3.1. Lanza (2009, 2012)
has computed the power released by magnetic reconnection at
the magnetospheric boundary and its dependence on stellar and
planetary parameters considering different models for the stellar
coronal field. The maximum dissipated power is found to range
from 1017 to 1019 W, even considering rather extreme values of
the parameters. Such values are insufficient by at least one order
of magnitude to account for the power radiated by the chromo-
spheric hot spots observed by Shkolnik et al. (2005, 2008) and
Gurdemir et al. (2012).

In the present approach, Alfvén waves have been filtered out
by assuming that the Alfvén velocity is much larger than the
orbital velocity of the planet. However, even without this as-
sumption, it is not possible to account for powers of the order
of 1020−1021 W, as found by Saur et al. (2013) by considering
the energy fluxes in the so-called Alfvén wing model.

To account for greater powers, we consider a magnetic loop
interconnecting the surface of the star with the planet that is
steadily stressed by the orbital motion of the planet. The ac-
cumulation of energy drives the field out of its initial potential
state as in the case of a solar magnetic arcade that is stressed
by shear motions at its footpoints. At a given point, the arcade
losses equilibrium and the field erupts producing a flare while
the magnetic helicity is taken away by a coronal mass ejection
allowing the field to relax again to a nearly potential state (e.g.,
Flyer et al. 2004; Zhang et al. 2006; Zhang & Flyer 2008). The
same process is expected to occur in the case of an interconnect-
ing star-planet loop. The effectiveness of the eruption process
in taking away magnetic helicity is crucial in this case because,
if helicity accumulates in the field, it will lead to a separation of
the stellar and planetary flux systems, i.e., the disappearance of
the interconnecting loop (cf. Sect. 3.1).

Assuming a sequence of cycles consisting of stress accumu-
lations and eruptions, the average energy dissipation rate in the
interconnecting loop must be equal to the average flux of the
Poynting vector across its base. In other words, the mean avail-
able power is:

P =
2π
µ

fAPR2
p|E × B|, (8)

where fAP is the fraction of the planetary hemisphere 2πR2
p

crossed by the field lines of the interconnecting loop, E =
−u0 ×Bp the electric field, u0 the relative orbital velocity, and Bp
the magnetic field at the base of the loop, located on the sur-
face of the planet. In terms of the surface field of the planet,
we have:

P $ 2π
µ

fAPR2
pB2

pv0. (9)

The fraction of the planetary surface magnetically connected to
the stellar field is given by Eq. (27) of Adams (2011):

fAP ≡ 1 −
(
1 − 3ζ1/3

2 + ζ

)1/2
, (10)

where ζ ≡ Bs(a)/Bp is the ratio of the magnetic field of the star to
that of the planet at the distance a of the planet (cf. Eq. (3)). Note
that our parameter ζ is denoted as β in Adams (2011), the sym-
bol being changed here to avoid confusion with the plasma β.
Equation (9) is valid when the timescale for the field relaxation
to the potential state τrel is comparable with or shorter than the
timescale for magnetic energy buildup by the stress produced by
the orbital motion of the planet τacc. The typical value of τrel is
comparable with the Alfvén transit time along the interconnect-
ing loop and is of the order of ∼103 s for close-in planets (cf.,
e.g., the final part of Sects. 2.3 and 3.1 of Lanza 2012), while
τacc ∼ 2Rp/v0 is the timescale for the orbiting planet to cross the
base of the interconnecting loop and is of the order of 103−104 s
for typical Rp ∼ 108 m and v0 ∼ 104−105 m s−1, thus satisfying
the requirement τrel ≤ τacc.

For a field strength B0 ∼ Bp ∼ 10 G, a relative veloc-
ity v0 ∼ 104−105 m s−1, a planetary radius Rp ∼ 108 m, and
fAP ∼ 0.1−0.2, we find P ∼ 1020−1021 W, that is sufficient to
explain the power radiated by chromospheric hot spots associ-
ated with HJs. That given by Eq. (9) is indeed the maximum
available power that one can expect from magnetic star-planet
interaction given the hypotheses adopted here. The energy re-
leased in the interconnecting loop is ultimately provided by the
orbital motion of the planet, but its dynamical effect on the orbit
is negligible in comparison with, e.g., tidal interactions because
such a kind of loop is present only for a limited fraction of the
time (≈10−20 percent; cf., e.g., Sect. 4.2 of Lanza 2011).

The constant phase lag between the planet and the hot spot
(Shkolnik et al. 2005) can be explained by assuming that the
coronal field is initially in an axisymmetric twisted force-free
regime (Lanza 2008, 2009) before reconnecting with the plane-
tary field. During the loss of equilibrium occurring in the recon-
nection phase, the interconnecting field gets rid of its magnetic
helicity by erupting twisted flux tubes as in solar coronal mass
ejections, thus relaxing to a nearly potential configuration. The
footpoints of the interconnecting loop on the stellar surface can-
not move because the field is frozen to the photospheric plasma.
In this way, the subsequent stress is applied to a nearly potential
loop with the initial phase lag between its stellar and planetary
footpoints almost unchanged. If the planet crosses a sequence of
loops of an unperturbed force-free axisymmetric field with an
interaction timescale short in comparison with its orbital period,
an approximately constant phase lag between the planet and the
chromospheric hot spot is expected. If the stellar field has a sig-
nificant non-axisymmetric component, the time dependence of
the energy release becomes remarkably complicated and neither
a constant phase lag nor a simple dependence of the irradiated
power on the orbital phase is expected (cf., Lanza 2012, for
details).

The energy dissipation in a stressed interconnecting loop is
not localized at the boundary of the planetary magnetosphere, as
in the case of the interaction of the separated star-planet flux sys-
tems. Applying a large-scale shearing motion to the footpoints of
a solar coronal loop whose magnetic field lines are steadily inter-
mixed by turbulent photospheric motions, Janse & Low (2009,
2010) find that a spatially dense distribution of current sheets
is produced extending over a large fraction of the loop volume.
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MHD	  numerical	  models	  

•  Cohen	   et	   al.	   (2009,	   2011)	   developed	  MHD	   numerical	   models	   also	   including	   the	  
measured	  field	  at	  the	  photosphere	  (e.g.,	  Moutou	  et	  al.	  2007;	  Fares	  et	  al.	  2010);	  	  

•  They	  do	  include	  the	  effects	  of	  plasma	  pressure	  and	  gravity;	  
•  They	  may	  account	  for	  the	  power	  released	  in	  hot	  chromospheric	  spots;	  	  
•  Models	   of	   stellar	   winds	   and	   their	   interac-on	   with	   close-‐in	   planets	   have	   been	  

developed	  by,	  e.g.,	  	  Vidooo	  et	  al.	  (2010,	  2011,	  2013);	  Cohen	  et	  al.	  (2014).	  

The Astrophysical Journal, 733:67 (12pp), 2011 May 20 Cohen et al.

(a)

(c) (d) (c)

(b) (b)

Figure 8. Left four panels: the equatorial plane colored with number density contours, together with red and blue spheres representing the star and the planet,
respectively. The panels are for phase angles of 270◦ (a), 60◦ (b), 100◦ (c), and 180◦ (d). Selected magnetic field lines are shown in yellow and blue. Two right panels:
the equatorial plane colored with number density contours for a phase angle of 60◦ (b) and 100◦ (c). The white arrows indicate the regions where reconnection is
taking place and the plasmoid released from the planetary tail.
(A color version of this figure is available in the online journal.)

to exhibit secular change within timescales of months or even
less.

The idealized scenario in which the stellar and planetary fields
are described as perfect, opposite dipoles can explain persistent
particle acceleration as a result of magnetic reconnection be-
tween the two fields (Ip et al. 2004; Cuntz et al. 2000; Cranmer
& Saar 2007; Lanza 2008, 2009). A tidally locked system can
produce a plasma density enhancement in closed coronal loops
that would be open without the planet (C1). However, based on
our simulation, none of these proposed scenarios can be persis-
tent for the case of a close-in planet that is not tidally locked
with the stellar rotation. Moreover, recent papers (Zarka 2007;
Vidotto et al. 2010) have suggested that reconnection events
between stellar and planetary fields can generate radio emis-
sions that can be observed and constrain the magnitude of the
planetary field. These calculations assume that the accelerated
electrons, which are the source for the radio signal, are created
via magnetic reconnection that takes place during time when the
planetary and stellar fields are exactly opposite (in particular,
during a geomagnetic event, when these fields can be opposite
for several days). Our simulation shows that for the general case
the situation of opposite fields is likely to be much shorter in
the case of a realistic, more complex stellar field, and that re-
connection events last for an hour or two at the most. If radio
emissions from such events can be detected at all, they will re-
quire long-term monitoring observations in order to distinguish
such events from flares and other background radio signals.
In any case, prediction for such emission using an idealized,

continuous reconnection scenario will overestimate the emitted
power.

Despite its short duration, the reconnection event leads
to a release of an amount of plasma from the planetary
magnetosphere (the exact amount, of course, depends on the
particular set of planetary boundary conditions). Based on the
mass flux displayed in Figure 7, we define an average value
of F = 10−11g s−1 cm−2 and a flux channel cross section of
A = π (0.1 R")2 to determine the total planetary mass flux,
Ṁp = F · A = 1.5 × 10−14 MJ yr−1. The average mass flux for
the “Weak” case is about two times lower than the “Strong” case.
If we assume that such reconnection events occur every orbit
(2.2 days), the planetary magnetosphere loses 2.5×10−12 MJ in
a single year (∼2.5 × 10−15 M% yr−1)–not a significant amount
integrated over the lifetime of the planet. The reconnection
depends on the structure of the stellar magnetic field, which
is not constant. Therefore, there are likely to be periods during
which more reconnection events occur, and periods with fewer
events. We further stress that this mass flux is of “cold” plasma
escaping from the planetary magnetosphere and is not an
attempt to model the actual atmospheric escape from the planet.
Nevertheless, these reconnection events should include particle
acceleration and precipitation, as well as radiation enhancement
that might impact the atmospheric escape in general. In addition,
stellar CMEs could drive similar reconnection events on top of
the reconnection between the ambient planetary and static stellar
fields. Such effects, however, are out of the scope of this paper
and we defer further discussion to future work.
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widely used indirect methods of radial veloc-
ity measurements or transit events. Moreover, 
the detection of exoplanetary radio emission 
would also demonstrate that the planet has a 
magnetic field. 

However, despite many attempts, exoplan-
etary radio emission has not yet been detected. 
One of the reasons for the lack of success is 
thought to be the beamed nature of the elec-
tron–cyclotron maser instability. Because the 
emission occurs over a small solid angle, it 
would have to be directed towards the Earth 
to be detected. Poor instrumental sensitivity 
would also explain the lack of detection of radio 
emission from exoplanets. Another reason for 
the failure to find exoplanets this way may be 
because of a frequency mismatch: the emission 
process is thought to occur at cyclotron frequen-
cies, which depend on the intensity of the plan-

etary magnetic field. Therefore, planets with 
magnetic field strengths of a few G, for exam-
ple, would emit at a frequency that could not 
be observed from the ground either due to the 
Earth’s ionospheric cut-off, or because it does 
not correspond to the operating frequencies of 
available instruments. In that regard, the low-
operating frequency of LOFAR (currently under 
commission), jointly with its high sensitivity at 
this low-frequency range, makes it an instru-
ment that has great potential to detect radio 
emission from exoplanets.

Note that different properties of star–planet 
systems can also give rise to physical inter-
actions that are absent or negligible in the solar 
system. For instance, it has been suggested that 
the winds of young Sun-like stars could change 
the orbital angular momentum of planets by 
the action of dragging forces, causing planetary 

migration (Lovelace et al. 2008). In the solar 
system, this process is negligible, but could 
be important in particular circumstances of 
stars that harbour strong magnetic fields and 
dense winds (Vidotto et al. 2009, 2010b) or for 
synchronizing stellar rotation with the orbital 
motion of planets during the pre-main-sequence 
phase (Lanza 2010).

Independently of the process involved, it is 
worth noting that, in order to study the inter-
action of the planets with the local environment 
in which they are immersed, a key step is to 
understand the magnetic coronae and winds of 
the host stars. 

Stellar magnetic fields 
Although we seem to comprehend reasonably 
well the properties of the solar wind (especially 
because we are immersed in it), it is much more 

2: The lowest energy state of the coronal magnetic field of  Boo as seen at different observing epochs. Colours denote the surface radial magnetic field 
and the solid line represents the neutral line (when the stellar magnetic field changes polarity).
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Numerical	  wind	  models	  and	  
planetary	  magnetospheres	  

Lem:	   Vidooo	   et	   al.’s	   (2014)	  model	   of	   the	  wind	   from	   an	  M-‐type	   dwarf	   star.	   Right:	   a	   planetary	  
magnetosphere	  under	  different	  wind	  regimes	  (Cohen	  et	  al.	  2014)	  [see	  also	  talk	  by	  V.	  See].	  

1166 A. A. Vidotto et al.

Figure 2. The final configuration of the magnetic field lines after the wind solution has relaxed in the grid. Overplotted at the surface of the star is the
observationally reconstructed stellar magnetic field (Donati et al. 2008), used as boundary condition for the radial magnetic field. Alfvén surfaces are shown
in grey. Note their irregular, asymmetric shapes due to the irregular distribution of the observed field.
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Fig. 2.— The magnetospheres of Planet A (top) and Planet B (bottom) for sub-Alfvénic (left) and super-Alfvénic (right) stellar wind
conditions. Color contours show the number density (note the different scales in the panels) and selected magnetic field lines are shown
in grey. The direction of the star (the direction from which the stellar wind is coming) is marked by the small yellow Sun shape. The
structures and trends are similar for Planet C.
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Fig. 2.— The magnetospheres of Planet A (top) and Planet B (bottom) for sub-Alfvénic (left) and super-Alfvénic (right) stellar wind
conditions. Color contours show the number density (note the different scales in the panels) and selected magnetic field lines are shown
in grey. The direction of the star (the direction from which the stellar wind is coming) is marked by the small yellow Sun shape. The
structures and trends are similar for Planet C.

Sub-‐Alfvenic	  	  wind	  

Super-‐Alfvenic	  wind	  
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Magne-cally	  powered	  evapora-on	  
•  In	  stars	  with	  planets	  closer	  than	  about	  0.05	  AU,	  magne-c	  reconnec-on	  between	  the	  stellar	  

and	  planetary	  fields	  may	  release	  a	  power	  exceeding	  that	  of	  the	  stellar	  EUV	  flux	  (Buzasi	  2013;	  
Lanza	  2013);	  	  

	  
•  The	  induced	  evapora-on	  is	  expected	  to	  be	  modulated	  with	  the	  stellar	  field	  strength;	  
	  
•  Accelerated	   electrons	   (and	   ions)	   can	   induce	   chemical	   reac-ons	   in	   the	   planet	   atmosphere	  

(e.g.,	  Rimmer,	  Helling	  et	  al.	  2014,	  produc-on	  of	  C2H2,	  C2H4,	  NH3,	  C6H6,	  etc.).	  
	   A&A 557, A31 (2013)

Fig. 2. Upper panel: the ratio Pmag/PEUV vs. the orbital semimajor axis a
for the known transiting planets computed for a stellar radial magnetic
field (s = 2). The value of Pmag given by Eq. (4) has been multi-
plied by 1/6 (see the text). The dotted horizontal line corresponds to
Pmag = PEUV. Middle panel: the same as the upper panel, but for s = 2.5
corresponding to a non-linear force-free stellar field. Lower panel: the
same as the upper panel, but for s = 3, corresponding to a potential
dipole stellar field.

significant magnetic field, evaporation by EUV irradiation is pre-
vented by the closed field lines in the low-latitude region and
only at high latitudes (say, >∼60◦) the flow is allowed to leave
the planet along open field lines (cf. Adams 2011; Trammell
et al. 2011). Therefore, the EUV-induced evaporation is signif-
icantly less efficient than assumed by Lecavelier Des Etangs
(2007), if planetary magnetic fields are not negligible. The
magnetic-induced evaporation may compensate for this reduc-
tion if s <∼ 2.5.

We conclude that the power released by magnetic star-planet
interaction can play a relevant role in the evaporation of several
close-in planets and is therefore worth of a detailed investigation.
A first step in this direction is undertaken in the next sections of
this work.

3. Model
3.1. The stellar corona
When the kinetic energy, gravity and thermal pressure p of the
plasma are much smaller than the magnetic pressure B2/2µ, the
field rules the dynamics and the energy balance of the plasma.
In this case, a magnetohydrostatic configuration is characterized
by the vanishing of the Lorentz force, i.e., J × B = 0, where
J = µ−1∇×B is the current density. In other words, ∇×B = αB,
where the force free-parameterα is constant along magnetic field
lines, as immediately follows by taking the divergence of both
sides of the equation (see, e.g., Lanza 2012, for more details).

A potential magnetic field has α = 0 along all its field lines
and represents the minimum energy state compatible with the
boundary conditions. The stellar field is not in general in a po-
tential state because the magnetic stresses at the stellar photo-
sphere store energy in the field itself making it deviate from its
minimum-energy state. The relaxation of the field to its poten-
tial state is generally prevented by the conservation of magnetic
helicity (see, Lanza 2009, 2012, for details). On the other hand,
the magnetic field of the planet is in a potential state (α = 0) be-
cause currents are generally not allowed to circulate in the nearly
neutral planetary atmosphere. Therefore, in the considered mag-
netohydrostatic regime, a magnetic field line cannot connect the
planet with the stellar surface, except when the stellar field is
potential, because α is constant along field lines.

If the stellar field is non-potential, the flux systems of the
star and the planet are topologically separated and their mag-
netic field lines come into contact on the boundary of the plan-
etary magnetosphere (cf. Fig. 1, upper panel). In general, the
field lines belonging to the two systems are not parallel on the
magnetospheric boundary and the orbital motion of the planet
pushes them into contact on one side of the surface forcing con-
tinuous magnetic reconnection. Considering that the Alfvén ve-
locity in the stellar corona is generally one order of magnitude
larger than the orbital velocity of the planet and that the ratio
β ≡ 2µp/B2 ' 1 (Lanza 2008, 2009, 2012), the magnetic pres-
sures of the stellar and planetary fields are in equilibrium at each
point of the boundary, i.e., B2

s (rs) = B2
p(rp), where Bs(rs) is the

stellar field at position rs with respect to the barycentre of the
star, and Bp(rp) the planetary field at position rp with respect to
the barycentre of the planet.

When the magnetic helicity of the stellar field is negligible,
the coronal field can relax to its minimum-energy potential state
and in this case there are magnetic field lines interconnecting the
surface of the star with the planet (cf. Fig. 1, lower panel). Close
to the planet, we approximate the potential field as in Sect. 3 of
Adams (2011) because the radii of the star and the planet are
much smaller than their separation (cf. also Adams et al. 2011).

Considering a spherical polar reference frame (O, rs, θ, ϕ)
with the origin O at the barycentre of the star and the polar axis ẑ
along the stellar spin axis, a stationary flow of the coronal plasma
is ruled by the equation:

ρ(u · ∇)u = −∇p + ρ∇Φ + J × B, (5)

where ρ is the density, u the velocity of the plasma, and Φ =
GMs/rs +GMp/rp + (1/2)Ω2r2

s sin2 θ the total gravitational plus
centrifugal potential, with Ω the angular velocity of rotation of
the star, and θ the colatitude measured from its North pole. In the
regime β ' 1, the plasma flows along magnetic field lines, that
is u = vŝ, where ŝ is a unit vector in the direction of the magnetic
field, i.e., B = Bŝ. Since thermal conduction is very efficient
along field lines at temperatures of the order of ∼ 106 K (Priest
1984), we assume that the coronal temperature Tc is constant
along a given field line, i.e., ∂Tc/∂s = 0, and that the plasma
follows the ideal gas law: p = (R̃/µ̃)ρTc, where R̃ is the gas con-
stant and µ̃ the mean molecular weight. Under these hypotheses,
Eq. (5) can be integrated along a given field line by considering
that (u · ∇)u = ∇(v2/2) + (∇ × u) × u, and gives:

ρ = ρ0 exp
{
µ̃

R̃Tc

[
−1

2
v2 + (Φ −Φ0)

]}
, (6)

with the potential Φ given by:

Φ = G
Ms

rs


1 + εrot

(
rs

Rs

)3 +G
Mp

rp
, (7)
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(B(R*)	  =	  10	  G;	  Bp	  =	  10	  G)	  

B(r)	  =	  B(R*)	  (r/R*)-‐s	  	  

where	  2	  ≤	  s	  ≤	  3,	  
s	  =	  2:	  radial	  field	  
s	  =	  3:	  dipole	  field	  	  
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Photospheric	  spots	  forming	  in	  
phase	  with	  the	  planet	  ?	  	  

•  For	   a	   general	   introduc-on	   to	   starspots	   in	   late-‐type	   main-‐sequence	   stars	   see,	   e.g.,	  	  
Berdyugina	  (2005);	  Strassmeier	  (2009);	  Kovari	  &	  Olah	  (2014);	  

	  
•  Spots	   at	   the	   subplanetary	   longitude	   have	   been	   detected	   in	   the	   synchronized	   system	  

CoRoT-‐4	  (Lanza	  et	  al.	  2009);	  
	  
•  Lanza	   et	   al.	   (2011b)	   suggested	   that	   some	   photospheric	   spots	   emerged	   at	   a	   constant	  

phase	  lag	  with	  respect	  to	  the	  sub-‐planetary	  longitude	  in	  CoRoT-‐6;	  	  
	  
•  Recently	   Beky	   et	   al.	   (2014)	   found	   a	   close	   commensurability	   between	   the	   rota-on	  

period	  of	  the	  spots	  occulted	  during	  transits	  and	  the	  orbital	  period	  of	  the	  planet	  in	  HAT-‐
P-‐11	  and	  confirmed	  a	  similar	  phenomenon	  in	  Kepler-‐17	  (see	  Desert	  et	  al.	  2011).	  	  

22	  



A&A 525, A14 (2011)

Fig. 5. The total spotted area vs. time, as derived from our lightcurve
model illustrated in Figs. 3 and 4. The uncertainty of the area (3σ error-
bars) has been derived from the standard deviation of the residuals of
the best fit to the light curve.

6.35 days. This leads to an estimated ∆Ω/Ω about half the above
value.

The amplitude of the surface differential rotation of CoRoT-6
is in agreement with the mean value found for stars of compara-
ble effective temperature and rotation period by fitting the shape
of their line profiles or by Doppler imaging techniques (Barnes
et al. 2005; Reiners 2006). For CoRoT-4, that has a slightly hot-
ter effective temperature of 6190 K and a mean rotation period
of ∼9 days, we estimate a lower limit for the surface differential
rotation ∆Ω/Ω = 0.057 ± 0.015 from the ME spot models with
Q = 4.5 (Lanza et al. 2009b). It may be explained by assum-
ing that the active regions mapped on that star are closer to the
equator. By comparison, the relative angular velocity difference
in the ±40◦ sunspot belt amounts to ∼0.05.

The total spotted area as derived from our modelling is plot-
ted vs. time in Fig. 5. Since we removed the long-term linear
trend in the flux, the associated variation of the spotted area is
not included in our model. There is no clear periodicity in the
variation, although timescales ranging from ∼25 to ∼60 days are
apparent.

5.3. Signatures of a possible star-planet interaction

In the reference frame adopted for our spot modelling, which
rotates with a period Prot = 6.35 days with respect to an iner-
tial frame, the period between subsequent crossings of a given
meridian by the subplanetary point is the synodic period Psyn =

22.25 days, defined as P−1
syn = P−1

rot−P−1
orb, where the orbital period

of the planet Porb = 8.886 days.
Considering the distribution of the spot filling factor f vs.

time and longitude, we find a correlation of the longitude of
some active regions with the meridian located at ∆" = −200◦
with respect to the subplanetary longitude (cf. Fig. 6). The white
lines overplotted on the distribution of f show the motion of such
a meridian vs. time with the period Psyn. The active regions that
reach a maximum filling factor close to their passage across this
meridian are marked with crosses in Fig. 6 and listed in Table 2,
where the columns from the left to the right report the time of
their maximum filling factor, their longitude "ar at that time, the
filling factor per 18◦ longitude bin f / fmax, normalized to the
maximum filling factor over the whole map ( fmax = 0.0059),
the distance δ" of the active region from the active meridian, and

Fig. 6. Isocontours of the spot filling factor as in Fig. 4 with white lines
tracing the active meridian lagging the subplanetary meridian by ∆" =
−200◦. White crosses indicate the relative maxima of the spot filling
factor corresponding to the active regions listed in Table 2.

Table 2. Stellar active regions associated with the active meridian.

Time "ar f / fmax δ" p
(HJD-2450000) (deg) (deg)

4583.68 36.2 0.563 75.1 1.000
4584.81 270.0 0.417 32.8 0.918
4597.65 126.2 0.387 31.2 0.873
4602.56 341.2 0.184 34.4 0.964
4602.93 51.2 0.452 41.7 1.000
4615.39 196.2 0.327 28.3 0.792
4637.29 133.8 0.328 39.9 1.000
4646.73 72.5 0.515 51.6 1.000
4647.10 0.0 0.591 14.8 0.414
4652.01 287.5 0.505 7.9 0.220
4671.64 342.5 0.335 4.8 0.135
4685.23 80.0 0.543 37.8 1.000
4710.53 72.5 0.965 4.0 0.113

the probability p of a chance association between them, respec-
tively. The latter is computed according to:

p = min
{

nar
δ"

∆L
, 1
}
, (5)

where nar is the number of active regions appearing during a
given synodic period and ∆L the longitude range where stel-
lar activity is mainly localized. If activity were distributed uni-
formly, ∆L = 360◦, but in CoRoT-6 most of the active regions
appear within a longitude range ∆L ∼ 250◦, owing to the pres-
ence of active longitudes. Therefore, we adopt ∆L = 250◦ and
nar = 7 to compute the probabilities in the last column of Table 2.
The adopted nar corresponds to the maximum number of active
regions observed in one synodic period, thus yielding the maxi-
mum probability of chance association.

The total probability pT of a chance occurrence for the entire
set of 13 active regions is:

pT =

∏

i

pi

min{pi}
· (6)

The division by min{pi} accounts for the additional degree of
freedom related to the fact that the phase lag ∆" = −200◦
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Fig. 3. The distributions of the spotted area vs. longitude at the labelled
times (HJD − 2 450 000.0) for Q = 4.5. The plots have been vertically
shifted to show the migration of individual spots (relative maxima of the
distributions) versus time. The vertical dashed lines mark longitudes 0◦
and 360◦, beyond which the distributions have been repeated to help fol-
lowing the spot migration. The vertical dotted line marks the subplane-
tary longitude. The dot-dashed, three-dot-dashed, and long-dashed lines
trace the migration of the most conspicuous spots detected in the plots.
Specifically, the active region indicated as AR1 in Table 2 is marked
with a three-dot-dashed line, AR2 with a long-dashed line, and AR3
with a dot-dashed line, respectively.

with a height of ∼3 standard deviations, which is unlikely to be
due to a chance fluctuation. Moreover, the subplanetary peak has
an FWHM significantly lower than of the active longitude peak
around 0◦ whose width reflects the migration of its active re-
gions in time. A greater migration rate of the active regions is
also responsible for smearing the active longitude around 0◦ and
the subplanetary longitude, when we consider the average of the
models computed with Q = 4.5 (Fig. 5, upper panel).

The total spotted area varies only slightly with time (see
Fig. 6) and may indicate a level of activity about 2−3 times
that of the Sun at the maximum of the eleven-year cycle. The
spotted area is determined here after removing the long-term de-
crease of the flux observed in the original light curve by Aigrain
et al. (2008). Therefore, it does not show the long-term linear
increase that one would expect in case the long-term trend were
not removed. Moreover, the absolute value of the area depends
on the adopted spot contrast cs and the value of Q. For instance,
a lower spot temperature would imply a stronger contrast and
thus a smaller area, but the relative variations of the area are
largely independent of cs and Q (cf. Lanza et al. 2009).

Table 2. Relative migration rates ∆Ω/Ω of the active longitudes for
different facular-to-spotted area ratio Q and rotation period Prot.

Q Prot AR1 AR2 AR3
(days)

0.0 9.202 0.106 ± 0.025 0.034 ± 0.008 0.070 ± 0.024
4.5 9.202 0.108 ± 0.008 0.052 ± 0.009 0.100 ± 0.024
4.5 8.870 0.063 ± 0.011 0.010 ± 0.010 0.073 ± 0.036
7.0 9.202 0.100 ± 0.011 0.046 ± 0.010 0.128 ± 0.010

Fig. 4. The same as Fig. 3, but for Q = 0.0.

Fig. 5. Upper panel: the spotted area per 18◦ longitude bin averaged
over time versus longitude for Q = 4.5. The semiamplitudes of the
error bars are equal to one standard deviation of the spotted area in the
corresponding bin. Lower panel: the same as in the upper panel, but for
Q = 0. The vertical dotted line marks the subplanetary longitude, while
the dashed vertical lines mark longitudes 0◦ and 360◦ beyond which the
distributions are repeated.

The Astrophysical Journal Supplement Series, 197:14 (13pp), 2011 November Désert et al.

Figure 11. Left: sequence of combined and binned transit light curves, with the best-fit model presented in Figure 2 and overplotted in red. Each co-added transit
corresponds to the combination of 22 individual transits that occurred at epochs modulo eight planetary orbital periods. The light curves are binned by 100 s and they
are shifted vertically for display purposes. Each combination of individual transits allows us to increase the S/N and to demonstrate that the same spots are occulted
during several consecutives transits and epochs. The overall combination of these eight transit light curves gives the final curves presented in Figure 2. Occulted stellar
spots are revealed in the combined curves since the stellar rotation period is eight times the planet’s orbital period. The same spots are crossed every eight transits at a
similar orbital phase. Right: residuals of the best-fit model subtracted from each individual combined light curve modulo 8. The vertical dashed lines correspond to the
beginning and to the end of the transits. Five occulted stellar spots are indicated on the residuals (A, B, C, D, and E) as they appear transit after transit at phase positions
expected from the stellar rotation period. This implies that the projected spin–orbit angle, λ, is very close to 0 for this system. The combination of the residuals of the
eight transit light curves is similar to the total residuals plotted in Figure 2 and exhibits a symmetrical structure.
(A color version of this figure is available in the online journal.)

of 600 samples in the epochal direction and 300 samples in
the transit phase direction. This image reveals individual spots
that we define as either “hot” or “cold” regions, depending on
whether the individual slide box residuals are below or above
the transit light curve model. The repeating vertical structure
is interpreted as spots marching across the transit chord such
as seen in the previous section. Each vertical profile is slanted
slightly from left to right indicating that the spots progress from
the ingress limb to the egress limb. Some spots make their way
around the star and reappear again during several stellar rotation
periods. For example, the collection of “cold” spots in the image
starting around Epoch 110 and ending around Epoch 170 seems
to be related to the same spot. We conclude from the nearly
continuous monitoring of Kepler-17 that the occulted starspots
are present on the same stellar chord for at least 100 days,
somewhat comparable to the lifetime of sunspots.

As Kepler continues to monitor transits of hot Jupiters in front
of active stars, it will help to better understand the stellar cycles.
If the Kepler mission is extended, the long term photometry
will enable it to produce starspot maps and learn more about
spot mean lifetimes and photospheric differential rotations. In
the case of Kepler-17, we may be able to measure the complete
activity cycle for this star and to compare it to another well-know
G-dwarf: the Sun.

7.2.3. Impact of Stellar Variability of Kepler-17 on the
System Parameters

When the planet transits in front of stellar spots, its transit
shape deviates from the averaged phase-folded light curve. The
effect of occulted stellar spots on the shape of the transit light
curve is observed in the residuals from the best-fit transit model
of the phase-folded light curve (see Figure 2). Since the stellar
activity influences the transit light curve profiles, the planetary
parameters we derive from these profiles are likely to be affected.
This is a well-known problem for planets transiting in front of
variable stars (e.g., Czesla et al. 2009; Désert et al. 2011a).
Importantly for the present study, the variability affects the
stellar density that we assume a fixed value for our determination
of the stellar parameters (see Section 4). Czesla et al. (2009)
propose to fit the lower envelope of the transit light curve to
recover more realistic transit parameters. This assumes that dark
stellar structures dominate over bright faculae. In the case of
Kepler-17b, we cannot exclude the possibility that every transit
is affected by dark or bright stellar regions so that a priori no
individual transit light curve can be used as representative of an
unaffected profile. Furthermore, because of the stroboscopic
effect described above, the phase-folded transit light curve
possesses combined pattern distortions that prevents the use
of its lower envelope to derive more accurate parameters.

10

CoRoT-‐4	  (Lanza	  et	  al.	  2009)	   CoRoT-‐6	  (Lanza	  et	  al.	  2011b)	  

Kepler-‐17	  transits	  (Desert	  et	  al.	  2011);	  	  
Bonomo	  &	  Lanza	  (2012)	  found	  a	  mean	  
rota-on	   of	   the	   unocculted	   spots	   of	  
12.01	  days,	  while	  that	  of	  the	  occulted	  
spots	   is	   11.89	   days	   =	   8	   Porb	   (Porb	   =	  
1.4857	  days).	  	  
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Conclusions	  and	  open	  ques-ons	  

	  
•  Different	  regimes	  of	  magne-c	   interac-ons	  among	  stars	  and	  planets	  (sub-‐Alfvenic	  
vs.	  super-‐Alfvenic);	  magnetospheric	  and	  coronal	  physics;	  

•  Interconnec-ng	  loops	  may	  account	  for	  chromospheric	  hot	  spots;	  	  	  

•  Other	   magne-c	   field	   configura-ons	   may	   provide	   support	   for	   prominence-‐like	  
condensaSons	   in	   the	   outer	   stellar	   corona,	   leading	   to	   circumstellar	   absorp-on	   of	  
chromospheric	  emission;	  	  
–  However,	  an	  intrinsically	  low	  level	  of	  ac-vity	  cannot	  be	  excluded	  (cf.	  the	  case	  
of	  WASP-‐18	  studied	  by	  Pillioeri	  et	  al.	  2014);	  

•  Magne-c	   fields	   rule	   planetary	   evapora-on	   and	   its	   -me	  modula-on	   (stellar	   EUV	  
flux	  vs.	  energy	  released	  by	  magne-c	  reconnec-on);	  
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Conclusions	  and	  open	  ques-ons	  

	  
•  Exo-c	   dynamo	   processes	   (starspots	   forming/rota-ng	   in	   phase	   or	   with	   a	  
period	  commensurable	  with	  a	  close-‐in	  massive	  planet)	  ?	  

	  
•  Photospheric	  features	  phased	  to	  the	  planets	  can	  affect	  the	  RV	  modula-on	  
thus	  impac-ng	  on	  planet	  confirma-on	  and	  their	  parameter	  determina-on	  
(e.g.,	  the	  case	  of	  HD	  192263,	  Santos	  et	  al.	  2003);	  	  

	  
•  The	   TESS	   and	   PLATO	  missions	  will	   open	   new	  perspec-ves	   by	   discovering	  
bright	  planetary	  systems;	  

	  
•  New	  theore-cal	  work	  with	  MHD	  numerical	  models	   (Cohen	  et	  al.;	  Mathis,	  
Brun	  et	  al.;	  Strugarek	  2014).	  	  
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Thank	  you	  for	  your	  aoen-on	  
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Addi-onal	  material	  
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Transit	  of	  WASP-‐12	  in	  UV	  

Passbands:	  NUVA:	  253.9-‐258.0	  nm;	  NUVB:	  265.5-‐269.6	  nm;	  NUVC:	  277.0-‐281.1	  nm	  (Fossa-	  et	  
al.	  2010;	  see	  also	  Haswell	  et	  al.	  2012).	  
	  
•  BenJaffel	  &	  Ballester	  (2013)	  found	  hints	  of	  an	  early	  ingress	  in	  the	  transit	  of	  HD	  189733	  as	  

observed	  in	  	  the	  C	  II	  133.5	  nm	  line,	  but	  it	  needs	  to	  be	  confirmed;	  
	  
•  Czesla	  et	  a.	  (2012)	  reported	  a	  longer	  transits	  (by	  ≈	  15%)	  in	  the	  Ca	  II	  H&K	  lines	  in	  CoRoT-‐2.	  
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“nb(t)” indicates the count rate in the blue side “narrow” set at
the time t.

The stellar limb darkening could potentially cause a color-
dependent transit shape (e.g., Brown et al. 2001). To assess this,
we calculated the difference of the blue and red spectral re-
gions for the “n,” “m,” and “w” bands as a function of time (see
Equation (1) of Charbonneau et al. 2002). We looked for vari-
ations in the transit depth due to the stellar limb darkening cal-
culating the difference between the mean photometric indexes
obtained in- and out-of-transit (see Equation (2) of Charbonneau
et al. 2002). All values we obtained were clearly consistent with
no variation.

To examine time dependence using Charbonneau et al.
(2002)’s method, we calculated in each band (“n,” “m,” and
“w”) the difference between the light curve of the central band
and the mean light curve of the blue and red bands:

nMg(t) = nc(t) − [nb(t) + nr (t)] / 2
mMg(t) = mc(t) − [mb(t) + mr (t)] / 2
wMg(t) = wc(t) − [wb(t) + wr (t)] / 2.

(1)

In this way, we removed any limb darkening dependence.
Again, the time series have rms scatter consistent with photon
noise: (σ [nMg(tout)] ∼ σ [mMg(tout)] ∼ σ [wMg(tout)] ∼
3.4×10−3 count s−1). We then calculated the difference between
the mean in-transit and out-of-transit flux:

∆nMg = nMg(tin) − nMg(tout)

= (3.5 ± 4.1) × 10−3 count s−1

∆mMg = mMg(tin) − mMg(tout)

= (−4.7 ± 4.1) × 10−3 count s−1

∆wMg = wMg(tin) − wMg(tout)

= (−11.4 ± 4.1) × 10−3 count s−1. (2)

These results show the detection of a deeper transit in the “m”
and “w” bands at 1.1σ and 2.8σ , respectively. Since the value
obtained in the “n” band is comparable to the resulting photon
noise error bar, we believe that the non-detection is due to the
very low signal level in nc along with absorption occurring
in the wide nr and nb bands. The size and the significance of
the detection increase as the signal included in the center band
increases, just as we would expect if the enhanced transit depth
in the Mg ii doublet is genuine.

3.2. The Transit Light Curve

We compared the light curves obtained for each observed
wavelength range and the one calculated from visible photom-
etry, as shown in Figure 2.

The NUVB wavelength range is the closest to the continuum
and shows a transit depth that matches, at ∼1σ , the transit light
curve derived by Hebb et al. (2009) from optical photometry.
In the NUVA and NUVC wavelength ranges, we obtained a
deeper transit at about 2.5σ level. These three light curves
were normalized to the line passing through the out-of-transit
photometric points (first and fifth exposures). The slopes of
the three normalization lines are 3.8 × 10−3 for the NUVA
region, 3.3 × 10−2 for the NUVB region, and 1.0 × 10−2 for the
NUVC region. These values are small enough that the applied
normalization did not change the transit shape.

The NUVC spectral region is clearly dominated by the Mg ii
resonance lines that are likely to be responsible for the detected
extra depth in the transit light curve. The NUVA spectral region
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Figure 2. Light curve obtained for each observed wavelength range (NUVA:
open black circles; NUVB: open red squares; NUVC: open blue triangles). The
horizontal error bar defines the orbital phase range covered by each observation.
The vertical uncertainty comes from a Poissonian treatment of the error bars. The
full green line shows the MCMC fit to the optical transit light curve (Hebb et al.
2009). The black crosses show the NUVA spectral range split into three equally
exposed sub-exposures. Lines indicate the normalization gradient applied.

includes resonance lines of Na i, Al i, Sc ii, Mn ii, Fe i, and Co i
(Morton 1991, 2000). The stellar spectrum is dominated by Mg i
and Fe i lines coming from low-energy levels. Probably, these
spectral features, likely to be present also in the spectrum of
the planet atmosphere, produce the observed deeper transit (see
Vidal-Madjar et al. 2004, for a similar case).

The end of the second exposure is at the phase of the planet
ingress, as shown in Figure 2. It is notable that the NUVA flux
during the second exposure lies below the out-of-transit level
by ∼2σ . We divided this particular exposure into three equal
sub-exposures plotted as black crosses. These suggest an early
ingress in the NUVA spectral region.

3.3. Detection of Other Elements

In each of the three observed wavelength ranges we calculated
a ratio spectrum (dλ) between the in-transit spectrum (inλ)
measured in the third exposure and the out-of-transit spectrum
(outλ), the mean of the first and fifth exposures. With these
ratio spectra we associated two different uncertainties: (1) the
standard deviation from the mean, d̄, which we denote as σdλ|exp .
(2) The uncertainty for each individual wavelength point in the
ratio spectrum from the propagated uncertainties. We denote
this as σdλ|prop . Expressed symbolically:

dλ = inλ

outλ
(3)

and

σdλ|exp =
√

(d̄ − dλ)2

N − 1
σdλ|prop =

√(
σinλ

outλ

)2

+
(

inλσoutλ

out2λ

)2

,

(4)
where N is the number of points, σinλ

= √
inλ, and σoutλ =√

outλ. In NUVA, NUVB, and NUVC σdλ|exp is 0.34, 0.12, and
0.76, respectively. σdλ|prop varies with wavelength, as shown in
Figure 3.

Table 2 lists the wavelength points of dλ (in laboratory
wavelengths) with deviations of more than 3σ from d̄ , assuming
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Models	  	  of	  transit	  of	  WASP-‐12	  in	  NUV	  
The shocking transit of WASP-12b L43
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Figure 2. Light curves and mid-transit images for our simulations. The top panel shows the modelled transits [near-UV: no bow shock (green), UV (black)]
with the HST observations in red. The black lines represent the results of our simulations. The bottom panel is the mid-transit image for each of our models
1A–2B (from left to right, respectively).

account for the absorption seen in the HST data (Fossati et al. 2010).
The HST observations (shown in the top panel of Fig. 2) enable us
to constrain the allowed shock geometries. The first data point at
phase = 0.86 lies on the continuum of the light curve, meaning the
early ingress is yet to begin. This allows us to find a maximal value
for XM. If this value is too large, the dip in emission in our simulated
light curves will begin too early. We find that we require XM < 14Rp

to ensure a fit to this data point.
Similarly, the second data point at phase = 0.92 provides us

with a minimum value for XM. Since this data point no longer
lies on the continuum, the bow shock must have started transiting
the star. The minimal value for the projected shock distance to fit
this data point is XM > 4.2Rp (Lai et al. 2010). We note that the
scenario discussed by Lai et al. (2010) where material is accreting
from the planet on to the star would result in an accretion stream
transiting before the planet and could therefore also produce an early
ingress.

For a given density, the depth of the transit light curve is deter-
mined by the area of shocked material as projected on to the plane
of the sky. The data point at phase = 0.98 therefore allows us to
constrain !rM and !ϕ. If the projected area is too large then the
light curve will be too deep, and if it is too small then the light curve
will be too shallow.

If there is shocked material still transiting after the planet has
moved off the stellar disc, then we will see a late egress in the
transit light curve. The data point at phase = 1.05 coincides with
the optical transit, suggesting this is not the case. We therefore
require ϕ0 + !ϕ < 90◦ to ensure the near-UV transit ends at the
same time as the optical transit.

3 RESULTS

We find that an acceptable fit can be achieved for many differ-
ent plasma temperatures. These temperatures determine the sound
speed and the wind speed. They therefore fix the values of ϕ0 and
also the density of the shocked material (Vidotto et al. 2010).

For certain plasma temperatures, however, we are unable to pro-
vide a fit to all the data points simultaneously with reasonable shock
parameters. For T = 1 × 106 K, the calculated density is too low
and the light curve is too shallow. Similarly, for T = 3.93 × 106 K,
the density is too high and the light curve is too deep. We therefore
choose to concentrate on two temperatures between these values,
T = 2 × 106 and 2.5 × 106 K. Because the magnetic field geometry
is very unconstrained, for each of these temperatures we present
a solution where the planet is embedded in the corona and hence
the shock is an ‘ahead shock’ with ϕ0 = 0◦ and also one where it
is immersed in the stellar wind, meaning ϕ0 is dependent on the
plasma temperature. As illustrative examples, we choose !ϕ = 80◦

for models 1A and 2A, and !ϕ = 40◦ for models 1B and 2B, as
these values will ensure the end of the near-UV transit will coincide
with the end of the optical light curve whilst still providing us with
a large projected shock area. For all cases, we then vary !rM to find
a fit to the observations.

Table 1 shows the parameters adopted for our illustrative cases
where a fit to all the data points has been found. Fig. 2 shows the
simulated light curves and mid-transit images for our models. From
the simulations, it is clear that a range of different shock geometries
and orientations are able to provide a fit to the data, suggesting there
is some degeneracy in the solutions.
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Observa-ons	  by	  Fossa-	  et	  al.	  (2010;	  mainly	  in	  the	  range	  ≈	  254-‐258	  
nm)	  and	  bow-‐shock	  models	  (Vidooo	  et	  al.	  2010;	  	  Llama	  et	  al.	  2011);	  	  
	  
Ben-‐Jaffel	  &	  Ballester	   (2014)	  proposed	   that	   the	  occul-ng	  material	  
comes	  from	  an	  evapora-ng	  exomoon	  orbi-ng	  the	  hot	  Jupiter.	  	  

Asymmetric	  accrec-on	  stream	  
or	   magnetopause	   (Lai	   et	   al.	  
2010)	  

L42 J. Llama et al.

Figure 1. Schematic of the shock geometry as viewed along the stellar
rotation axis (not drawn to scale). The shock normal makes an angle ϕ0
to the direction of motion of the planet. The distance from the planet to
the shock, rM, is determined primarily by the strength of the planetary
magnetic field. XM denotes the maximum distance between the planet and
the projected lateral extent of the shock. This distance depends on the chosen
values for rM, ϕ0 and "ϕ. "rM is the region of compressed stellar material
behind the shock.

2 TH E M O D EL

If the relative velocity of the planetary and the stellar coronal mate-
rial is supersonic then a bow shock could form (see Fig. 1). The inter-
action between planetary material and stellar material compresses
the local plasma to produce a region of higher density plasma be-
hind the shock. If the optical depth of the shocked material is high
enough then starlight will be absorbed and produce an early ingress
in the transit light curve.

The angle between the shock normal and the orbital direction
of the planet is given by ϕ0. The value of ϕ0 is determined by
the relative velocity of the planetary and stellar coronal material.
Fig. 1 of Vidotto et al. (2010) illustrates the scenarios leading to
the various shock orientations. There are two limiting cases: an
‘ahead shock’ (ϕ0 → 0◦) forms when the planet is embedded in the
stellar corona and a ‘dayside shock’ (ϕ0 → 90◦) forms when the
radial wind velocity is very much greater than the relative azimuthal
velocity of the planet.

Here we use models for the stellar corona and wind (Vidotto et al.
2010, 2011) to obtain a value for the plasma density at the planet.
These models assume a typical solar base density of n0 ∼ 108 cm−3

(Withbroe 1988) and either an isothermal hydrostatic corona or an
isothermal thermally driven wind. We assume an adiabatic shock
with a maximum compression ratio of 4. For an isothermal corona
of temperature T , the density of stellar material, nobs, at a planet of
orbital radius Rorb is given by equation (8) of Vidotto et al. (2010):

nobs

n0
= exp

[
GM#/R#

kBT /m

(
R#

Rorb
− 1

)
+ 2π2R2

#/P
2
#

kBT /m

(
R2

orb

R2
#

− 1
)]

.

(1)

For the stellar wind case, we use mass conservation (nurr2 = const)
and the momentum equation,

ρur
∂ur

∂r
= −∂p

∂r
− ρ

GM#

r2
, (2)

to obtain values for the radial velocity, ur and density, nobs. The
plasma density can then be converted into a density of fully ionized
magnesium using the relation:

nMg II = 4 × nobs × nMg

nH
, (3)

where nMg/nH is the ratio of magnesium number density to hydrogen
number density which is derived from the metallically of the host
star (Hebb et al. 2009). For WASP-12, nMg/nH = 6.76 × 10−5

(Vidotto et al. 2010). From this density, we can then find bow-
shock geometries and orientations that fit the HST observations of
Fossati et al. (2010).

To investigate whether the model presented by Vidotto et al.
(2010) is able to reproduce the data from the near-UV observations,
we use Monte Carlo radiative transfer calculations to produce simu-
lated light curves. The parameters we adopt to match the WASP-12
system are Mp = 1.41MJ, Rp = 1.79RJ (where MJ and RJ are the
mass and radius of Jupiter), M# = 1.35 M& and R# = 1.57 R&.
The host star is a late F type and the planet orbits in the equatorial
plane with an impact parameter b = 0.36 R# (Hebb et al. 2009).

The shocked material is considered to be at a distance rM from
the planet, with a thickness "rM and an angular extent 2"ϕ. The
projected lateral extent of the shock is dependent on rM, ϕ0 and "ϕ.
The maximum distance between the planet and the projected lateral
extent of the shock, XM, can take the following forms:

XM =
{

rM if ϕ0 ≤ "ϕ

rM cos(ϕ0 − "ϕ) if ϕ0 > "ϕ.
(4)

2.1 Monte Carlo radiation transfer

Our simulated transit light curves are produced using a 3D Monte
Carlo radiation transfer code (Wood & Reynolds 1999). The circum-
planetary density structure is prescribed on a 3D spherical polar grid
(coordinates r, θ , ϕ) and is externally irradiated with Monte Carlo
photon packets with a distribution that reproduces the spatial in-
tensity distribution of a limb-darkened star. We assume a spherical
planet and a limb-darkening law such that the intensity I is given by

I (µ)
I (0)

= 1 −
4∑

n=1

an(1 − µn/2), (5)

where µ = cos θ = (1 − r2)1/2, 0 ≤ r ≤ 1 is the radial distance into
the stellar disc normalized to the stellar radius and I(0) is the emer-
gent intensity at the centre of the star (Mandel & Agol 2002). The
coefficients an are chosen from Claret (2004) to match the u-band
limb-darkening of the host star. We assume that the material absorbs
or scatters radiation out of the line of sight with no scattering into
the line of sight, which is valid for the optical depths required to
produce the early-ingress transits. For this Letter, we assume the
bow shock is of uniform density and that the material is static, how-
ever our models are very general and can incorporate any density
structure: analytic, tabulated or from dynamical simulations.

2.2 Analysis of the HST observations

Our goal is to determine the range of shock geometries that can
provide both an early-ingress and sufficient optical depth in Mg II to
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Star-‐Planet	  Magne-c	  Interac-ons	  
(SPMI)	  	  

•  I	  shall	  focus	  on	  a	  few	  observa-ons:	  
	  

–  Chromospheric	  hot	  spots	  rota-ng	  in	  phase	  with	  the	  planet;	  
	  
–  Low	  chromospheric	  emission	  level	  in	  systems	  with	  HJs;	  
	  
–  Transits	  in	  the	  EUV	  (WASP-‐12);	  
	  
–  Preferen-al	  orbital	  phases	  for	  stellar	  flares	  (HD	  189733);	  
	  
–  Possible	  photospheric	  ac-vity	  phased	  to	  a	  close-‐in	  planet.	  
	  

•  Then	  I	  shall	  briefly	  consider	  some	  simple	  models.	  	  
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Open	  ques-ons	  to	  be	  addressed	  by	  
the	  models	  	  

	  
•  Why	  are	  chromospheric	  hot	  spots	  shimed	  with	  respect	  to	  the	  phase	  

of	  planetary	  conjuc-on	  ?	  

•  What	   is	   the	  physical	  process	  responsible	  for	  the	  energy	  dissipated	  
in	  hot	  spots	  ?	  

	  
•  What	  is	  producing	  the	  low	  level	  of	  chromospheric	  emission	  in	  some	  

stars	   with	   transi-ng	   HJs	   ?	   Is	   it	   circumstellar	   absorp-on	   or	   is	   the	  
stellar	  ac-vity	  level	  intrinsically	  very	  low	  (as	  found	  by	  Pillioeri	  et	  al.	  
2014b	  in	  WASP-‐18;	  see	  S.Wolk’s	  talk)	  ?	  	  

	  
•  What	   is	   producing	   the	   asymmetric	   transit	   profile	   in	   the	   UV	   in	  

WASP-‐12	  ?	  	  
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Preferen-al	  orbital	  phases	  for	  flares	  in	  
HD	  189733	  

•  Pillioeri	  et	  al.	  (2014a)	  studied	  the	  X-‐ray	  emission	  of	  HD	  189733.	  Three	  coronal	  flares	  were	  
observed	  close	  to	  the	  egress	  of	  the	  planetary	  transits	  (orbital	  phase	  range	  0.55-‐0.65).	  	  

– 20 –

!

!

!

! !

!

Fig. 9.— Stellar rotational phases (left panel) and planetary orbital phases (right panel)

during the X-ray observations obtained with XMM-Newton, Chandra and Swift. For the

stellar rotational phases the zero point is set to the beginning of XMM-Newton exposure

in 2007. Observations with intense flares are marked with filled symbols: red solid circles

for XMM-Newton flares and blue triangle for the Swift flare. In both panels, shaded areas

mark the phase intervals without observations of large flares. We used the Swift observa-
tions nr. 00036406010, 00036406011, 00036406012, 00036406013, 00036406014, 00036406015,

00036406016, 00036406017, and Chandra observations nr. 12340, 12341, 12342, 12343, 12344,
12345.
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Helicity	  modula-on	  and	  flares	  
•  The	   passage	   of	   the	   planetary	   magnetosphere	   across	   an	   extended	   stellar	   loop	  

modulates	  its	  magne-c	  helicity	  and	  may	  trigger	  a	  flare	  (Lanza	  2012);	  	  
•  If	  an	  extended	  coronal	  loop	  is	  present	  in	  HD	  189733	  at	  an	  approximately	  constant	  

longitude,	   then	   it	   can	   produce	   recurrent	   flares	   when	   it	   is	   perturbed	   by	   the	  
planetary	  magnetosphere	  moving	  across	  its	  top	  (cf.	  Pillioeri	  et	  al.	  2011,	  2014a).	  	  

A. F. Lanza: Close-in planets and magnetic activity

Fig. 1. A sketch of the star-planet system with indication of Va, the volume interior to the star, and Vm, the volume occupied by the planetary
magnetosphere assumed to be spherical. Two flux tubes are plotted and in the upper one Vf the cross sections F1 and F2 where the tube intersects the
stellar surface and the magnetosphere are labelled, respectively. The blue arrows indicate the relative orbital velocity u and its normal component vn
at the intersections of the two flux tubes with the magnetosphere. The dashed line inside Vm separates the region I where vn < 0, i.e., is oppositely
directed with respect to the outward normal to the base of the flux tube, from the region II where vn > 0.

where S f is the closed surface bounding the volume Vf , n̂ the
unit outward normal to S f , and ψ the scalar potential of Bp, i.e.,
Bp = ∇ψ.

The connection between the magnetic energy and the relative
helicity can be derived by considering that ∇ · (A×B) = B · (∇×
A)−A ·(∇×B) = B2−α(A ·B), where we have applied the force-
free condition ∇ × B = αB to the field of the flux tube. Since α
varies only across the field lines, the variation of α across the flux
tube section is limited, i.e., αmin ≤ α ≤ αmax, with the minimum
and maximum values close to each other if the cross section is
sufficiently small. The magnetic energy E of the flux tube is:

E ≡
∫

Vf

B2

2µ
=

1
2µ

∫

Vf

α (A · B) dV +
1

2µ

∫

Vf

∇ · (A × B) dV

=
1

2µ

∫

Vf

α (A·B) dV+
1

2µ

∮

S f

(A×B) · n̂dS , (13)

where the second equality follows by the application of Gauss’
theorem. Applying the mean-value theorem to the first integral
on the r.h.s., we find:

E =
〈α〉
2µ

∫

Vf

A · B dV +
1

2µ

∮

S f

(A × B) · n̂dS

=
〈α〉
2µ

HR+
1

2µ

∮

S f

[
〈α〉
(
ψAp−A × Ap

)
+A × B

]
· n̂dS , (14)

where the mean value αmin ≤ 〈α〉 ≤ αmax and we have made
use of Eq. (12) to transform the first integral on the r.h.s. This
expression generalizes Eq. (17) of Berger (1985) to the case of
a non-linear force-free field. Since the magnetic field inside the
flux tube occupies a finite volume and is confined by the closed

surface S f , its minimum energy state is the linear force-free field
satisfying the boundary conditions and the constraint set by the
conservation of the relative helicity. If the dissipation of the ex-
cess magnetic energy is fast in comparison with the helicity vari-
ation, we can assume that the field is always close to such a
minimum energy state. A variation of the relative helicity or of
the boundary conditions that changes the surface integral in the
r.h.s. of Eq. (14) then produces a variation of the energy of the
field. The contribution of the surface integral to the energy can
be written in terms of the two quantities:

Θ ≡
∮

S f

(
ψAp − A × Ap

)
· n̂dS , and (15)

Σ ≡ 1
2µ

∮

S f

(A × B) · n̂dS . (16)

We focus on the effects produced by the orbital motion of the
planet that changes the boundary conditions on the base F2. The
variation of the surface terms is confined to F2 because we as-
sume that the stellar coronal field is not perturbed outside the
planetary magnetosphere by the motion of the planet. This gives:

dE
dt
=
〈α〉
2µ

(
dHR

dt
+

dΘ
dt

)
+

dΣ
dt
, (17)

where 〈α〉 is assumed to be independent of the time because α
is constant along each magnetic field line so that its mean
value is set by the boundary conditions at F1 on the stellar sur-
face that is not perturbed by the planet. For the sake of simplic-
ity, we compute the variations of Θ and Σ by assuming that the
surface F2 is fixed (see, e.g., Smirnov 1964, for the neglected
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Stellar	  obliqui-es	  	  

•  Measuring	   -dal	   dissipa-on	   efficiency	   in	   stars	   of	   different	   Teff	   is	   crucial	   also	   to	  
understand	  the	  distribu-on	  of	  the	  measured	  projected	  stellar	  obliquity	  (lambda)	  in	  
planetary	  systems	  (picture	  from	  Esposito	  et	  al.	  2014;	  see	  also	  Winn	  et	  al.	  2010);	  

•  Large	  body	  of	  theore-cal	  inves-ga-ons	  on	  this	  topics	  (e.g.	  Lai	  2012;	  Albrecht	  et	  al.	  
2012;	  Rogers	  &	  Lin	  2013).	  

A&A 564, L13 (2014)
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Fig. 2. Compilation of the values of λ, measured via the RM effect,
as a function of the host star effective temperature (see: http://www.
astro.keele.ac.uk/jkt/tepcat/rossiter.html). HAT-P-18b is
shown as a filled blue dot. For the two objects marked with red squares,
the determination of λ is doubtful (see text for details). The dashed red
line at Teff = 6250 K marks the limit above which the mass of the con-
vective shell becomes negligible (Winn et al. 2010a).

HAT-P-18, with a Teff = 4870 ± 50 K and a very large mis-
alignment angle λ = 132 ± 15 deg, seems to represent an ex-
ception in this scheme. However, as already argued by A12,
the realignment time-scale also depends on other parameters
such as the planet/star mass ratio and the scaled semi-major
axis a/R". In fact, using the equation (2) in A12 to estimate the
alignment timescale τCE, for HAT-P-18 we find τCE ! 1015 yr,
adopting the equilibrium tide theory of Zahn (1977). Given the
present uncertainty of the tidal theory, rather than the absolute
value of τCE, it is interesting how it compares with the val-
ues for other TEPs. HAT-P-18b has one of the highest values
of τCE among the TEPs that orbit cool stars, inferior only to
HAT-P-11b and HD 80606b, which are also both significantly
misaligned (see Fig. 24 in A12). Therefore, HAT-P-18b confirms
that planets around cool stars can also have misaligned orbits,
provided that they have a longer tidal realignment time-scale
due to smaller mass (HAT-P-11b, Winn et al. 2010b; Kepler-63b,
Sanchis-Ojeda et al. 2013) and/or larger orbital semi-major axis
(WASP-8b, Queloz et al. 2010; HD 80606b, Hébrard et al. 2010;
Kepler-63b). The high misalignment angle λ = 153 deg of
WASP-2b (Triaud et al. 2010) is at odds with its mass and sep-
aration (Mp = 0.9 MJ, a = 0.03 AU), but the reliability of the
measure was confuted by Albrecht et al. (2011), based on new
observations. The value of λ for WASP-80b (Triaud et al. 2013)
is strongly dependent on the value assumed for V sin I", because
of the nearly zero impact parameter.

The circularization of the orbit proceeds on a much
shorter time-scale because of tidal dissipation inside the planet.
Adopting a modified tidal quality factor of Q′p = 105, cor-
responding to the value measured in Jupiter (Lainey et al.
2009), we obtain a damping time-scale of about 90 Myr for the
eccentricity.

Rogers & Lin (2013) challenged the interpretation of A12
of the λ–Teff correlation. They advocated migration in the pro-
toplanetary disc that produces aligned hot-Jupiters, and invoked
a mechanism based on stellar internal gravity waves to explain
the high obliquities found in hot stars. We point out that this

mechanism is not applicable to stars such as HAT-P-18, which
have a convective envelope.

5. Conclusions

We have found that the Saturn-mass planet hosted by HAT-P-18,
a K2 dwarf star with Teff = 4870± 50 K, lies on a retrograde or-
bit. We discussed how the existence of such object fits in the
context of the current alternative theories of giant planet or-
bital migration. HAT-P-18b scores a point in favour of gravita-
tional N-body (N " 3) interactions, while migration in the proto-
planetary disc seems unable to explain its existence. HAT-P-18b,
which is one of the very few planets around cool stars found to
be on a retrograde orbit, also allows setting constraints on the
efficiency of tidal interactions in obliquity damping.
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Magne-cally	  modulated	  
evapora-on	  ?	  	  

•  Kawahara	  et	  al.	  (2013)	  suggested	  that	  in	  the	  case	  of	  the	  very	  low-‐mass	  transi-ng	  
planet	  KIC	  12557548	  (Rappaport	  et	  al.	  2012;	  Croll	  et	  al.	  2014),	  the	  transit	  depth	  of	  
its	  cometary	  tail	  may	  change	  in	  phase	  with	  the	  modula-on	  of	  the	  stellar	  light	  curve	  
induced	  by	  starspots.	  

The Astrophysical Journal Letters, 776:L6 (6pp), 2013 October 10 Kawahara et al.

Figure 4. Top panel: the transit depth variation folded by P1 = 22.83 ± 0.21 days. A typical statistical error of the depth is shown by a green bar. Red bars are the
transit depth averaged over bins. Middle panel: the mean value of the binned data of the top panel (an expanded version of the top panel around the red error bars).
Bottom panel: the folded cotrended light curve of KIC 12557548 .
(A color version of this figure is available in the online journal.)

period. We concentrate on the periodicity of P1 through the rest
of the paper.

We fold the transit depth variation with P1 (the top and middle
panels in Figure 4). The mean value of binned data has ∼30%
variation. We also fold the cotrended light curve with P1 (the
bottom panel) and find that the folded cotrended light curve is
negatively correlated with the folded depth variation. A large
starspot can survive for many years (Berdyugina 2005). The 2%
variation of the folded light curve can be interpreted as long
term variation due to a large starspot associated with a local
active area. Hence, our interpretation of the anti-correlation is
that the planet tends to make deeper occultation when facing the
large starspot.

In general, stellar visibility depends on competition among
starspots and faculae. In the case of the Sun, spot modeling
(Lanza et al. 2007) predicts that a single active area decreases
the visibility only for the angle between the line-of-sight and
the local active area on the stellar surface φ ! 45◦, due to the
large faculae-to-spots ratio Q = 9. However, for several stars
with large flux modulation, smaller values of Q = 1–4.5 were
estimated from the spot modeling, and faculae for these stars
do not contribute significantly to the visibility (Lanza et al.
2009b, 2009a; Lanza et al. 2010). Throughout the rest of the
paper, we assume that the local active area decreases stellar
visibility.

The stellar visibility variation results in the apparent variation
of the measured depth via normalization. Désert et al. (2011)
considered this effect for different epochs of stellar activity
(a ∼1 yr interval). We use a similar formalism, although we
consider this effect during one stellar rotation. The apparent
variation of the depth δd ≡ (dv − do)/do is related to that of the
visibility during one revolution, δF ≡ (Fv − Fo)/Fo as

δd = αδF , (1)

where dv and do are the measured depths when the active area
is located on the side visible to us and the opposite side, Fv and
Fo are the visibilities for the two sides. Denoting the average
surface brightness of the photosphere by fv and fo for the two
sides and that along the trajectory of transit by f̃v , f̃o, we can
express

δd = (f̃v/fv)

(f̃o/fo)
− 1 =

δf̃ /δf − 1

1 + δF

δF , (2)

where δf ≡ (fv−fo)/fo = δF and δf̃ ≡ (f̃v−f̃o)/f̃o. Assuming
that the spot crossing is negligible (|δf̃ /δf | < 1) and 1+δF ∼ 1,
we obtain −2 ! α " 0. If the surface brightness outside the
spot areas is homogeneous, we obtain α = −1. In our case,
we expect the 0–4% variation of δd to be anti-correlated to the
stellar visibility. Since the observed variation is δd ∼ 30%, we
conclude that the periodicity of the depth variation synchronized
with the stellar rotation is not a false positive.

Van Eylen et al. (2013) found a seasonal variation of transit
depth for HAT-P-7 b due to instrumental systematics. They did
not report any other periodicity <1 yr. Since the periodicities
P2 and P3 are larger than period of a quarter, instrumental
systematics should be considered in further studies.

3. INTERPRETATION

To consider possible scenarios of evaporation, two important
constraints from observation, the mass-loss rate Ṁp and the
planet radius Rp, should be taken into account. The mass-
loss rate was constrained by both R12 and PC13 in similar
but slightly different ways, Ṁp ∼ 1 M⊕ Gyr−1 and Ṁp >
0.1–1 M⊕ Gyr−1. Here we summarize the essential part of their
derivation. The Ṁp can be estimated using the total cross section

3

(Porb	  	  =	  15.685	  hrs;	  a	  ≈	  0.013	  AU;	  Croll	  et	  al.	  2014)	  	   (Kawahara	  et	  al.	  2013)	   35	  
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Table 1
CFHT, HST, and Kepler Photometry of KIC 1255

Parameter CFHT Kepler CFHT Kepler HST Kepler
Transit 1 Transit 1 Transit 2 Transit 2 Transit Transit 3

A 1.107+0.293
−0.276 1.036+0.103

−0.111 1.214+0.193
−0.241 1.268+0.103

−0.103 0.058+0.051
−0.066 0.149+0.090

−0.102
ACorr 1.09 ± 0.32 n/a 1.23 ± 0.27 n/a n/a n/a
ttransit (BJD-2456150) 3.881+0.004

−0.005 3.877+0.002
−0.003 22.841+0.004

−0.005 22.830+0.001
−0.001 180.337a 180.337a

yo 0.00100+0.00053
−0.00059 -0.00030+0.00014

−0.00014 0.00056+0.00046
−0.00042 0.00027+0.00015

−0.00014 0.00007+0.00022
−0.00024 0.00146+0.00016

−0.00016
3σ upper limit on A 1.865 1.368 1.936 1.585 0.354 0.474

Notes. a We fix ttransit to the predicted midpoint of the transit for this analysis due to the fact we are unable to detect the transit on this occasion.
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Figure 1. Top panel: Kepler long cadence photometry (black points) of KIC 1255
phased to the orbital period of the candidate planet (∼15.685 hr). The red line
is the binned mean of the orbital phase-folded light curve. Bottom panel: the
binned mean of the phase-folded light curve (every φ = 0.005 in phase) of the
short cadence (red circles) and long cadence (blue squares) photometry.
(A color version of this figure is available in the online journal.)

of KIC 1255 with the obvious rotational modulation removed.
The spot-corrected, phase-folded, long cadence light curve of
KIC 1255 is presented in the top panel of Figure 1; the short
cadence data are similar but have much higher scatter per point.
We present the phase-folded, binned mean of the long and short
cadence data in the bottom panel of Figure 1. We note that the
short cadence data display a marginally narrower transit and
appears to have an extra, brief, enhanced decrement in flux fol-
lowing the transit (i.e., near phase φ = 0.65) that is not visible
in the long cadence photometry.

To compare the Kepler photometry to our CFHT ground-
based (Section 2.2) and HST space-based (Section 2.3.1) pho-
tometry, we also present the Kepler PDCSAP photometry, with-
out the spline correction. Given the asymmetric transit profile
and varying transit depth displayed in the Kepler photometry,
we choose to fit our individual Kepler transits (and the simulta-
neous CFHT and HST photometry) by scaling the mean transit
profile of the short cadence Kepler photometry by a multiplica-

tive factor, A. Therefore, the function we use to fit our data,
g(t), is compared to the mean of the phase-folded short cadence
photometry, f (t) (shown in the bottom panel of Figure 1), by

g(t) = 1 + A [f (t − ttransit) − 1] + yo, (1)

where yo is simply a vertical offset, and ttransit is the mid-transit
time (defined as the minimum of the phase-folded mean of
the short cadence photometry, at phase φ = 0.5). We note that
a value of A = 1 corresponds to a KIC 1255b transit depth
of 0.55% of the stellar flux, as shown in the bottom panel
of Figure 1. We note that, by multiplying our phase-folded
mean by A, we are scaling up or down the size of the apparent
forward-scattering peak, as well as the depth of the transit.15 To
fit our Kepler transits, as well as the CFHT and HST transits
that follow,16 we employ Markov Chain Monte Carlo (MCMC)
techniques (as described for our purposes in Croll 2006). In
Figures 2 and 3, we present the PDCSAP short-cadence Kepler
photometry of KIC 1255b which was obtained simultaneously
with the CFHT and HST photometry, as well as the best-fit
scaled profile, g(t), of the mean short-cadence Kepler profile,
f (t). We assume an error on the Kepler data for our MCMC
fitting based on the rms of the residuals to the best-fit model.
The associated best-fit parameters are presented in Table 1.

2.2. CFHT/WIRCam Photometry

We obtained two Ks band (∼2.15 µm) WIRCam (Puget
et al. 2004) photometric data sets of the transit of KIC 1255
(K ∼ 13.3). Data sets were obtained on the evenings of 2012
August 13 and 2012 September 1 (Hawaiian Standard Time).
The observations lasted for ∼6.5 hr and ∼5 hr, respectively. High
wind impacted the image quality for the first set of observations
(2012 August 13); the second set of observations were of
photometric quality throughout the night (2012 September 1).
Reduction of the data and aperture photometry was performed
as detailed in Croll et al. (2010a, 2010b). Although WIRCam
offers a 21′ × 21′ field of view, we only utilize reference stars
from the same detector as our target, therefore resulting in a
10′ × 10′ field of view. We employ a range of aperture radii for
our CFHT photometry (as discussed below in Section 2.2.1),
and subtracted the sky in all cases using an annulus with
an inner and outer radius of 14 and 20 pixels, respectively.
To determine the fractional contribution of the square pixels

15 This assumption is likely reasonable, as the analysis of Brogi et al. (2012)
indicates that the deeper transits appear to display a larger forward-scattering
peak just prior to transit, as one might naively expect if the deeper transit is
being caused by a larger amount of material occulting the star.
16 We note that we do not account for the effect of the various exposure times
of our CFHT, HST, and Kepler data on estimating the parameters of interest in
Equation (1), as such differences are negligible given our short exposure times
(∼5 s to ∼1 minute; please see Kipping 2010).
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Linear	  force-‐free	  fields	  
•  Force-‐free	  fields:	  	  

	  
•  Taking	  	  the	  divergence	  of	  both	  sides:	  	  

	  
•  Therefore	  α	  is	  constant	  along	  each	  magne-c	  field	  line;	  
	  
•  A	  linear	  force-‐free	  field	  is	  one	  whose	  α	  is	  the	  same	  along	  all	  the	  field	  lines;	  
	  
•  For	  a	  fixed	  magne-c	  helicity	  H	  and	  boundary	  condi-ons,	  it	  is	  the	  minimum	  energy	  field	  

[REF.];	  

	  
	  	  	  	  	  	  	  where	  A	  is	  the	  vector	  poten-al	  of	  the	  field,	  i.e.	  	  
	  
•  When	  H=0,	  the	  minimum	  energy	  configura-on	  for	  assigned	  boundary	  condi-ons	  is	  the	  

poten-al	  field	  (α	  =	  0).	  	  	  
	  	  

A. F. Lanza: Close-in planets and magnetic activity

2.2. Power dissipated by magnetic reconnection

The orbital motion of the planet inside the stellar corona pro-
duces a continuous reconnection between the coronal magnetic
field lines and the planetary field lines. Lanza (2009) studied this
phenomenon and estimated the power dissipated in the stellar
corona. We briefly recall the main assumptions and the results
of that investigation that are useful for the present study. We as-
sume that the planet is on a circular orbit located on the equa-
torial plane of the star. The surface of the planetary magneto-
sphere, where its field lines interact with those of the coronal
field, is assumed to be a sphere of radius Rm. As a matter of
fact, the magnetospheric boundary can be elongated in the di-
rection of the orbital motion of the planet (cf., e.g., Cohen et al.
2011b). However, we specialize our theory to the case when the
orbital velocity of the planet is much smaller than the Alfvén
velocity in the stellar corona. Therefore, the magnetic field con-
figuration can be regarded as magnetostatic and the boundary of
the magnetosphere is nearly spherical because it is defined by
the balance between the magnetic pressure of the coronal field
and the pressure of the planetary field assumed to be a dipole.
Assuming that the magnetic pressure of the coronal field B(rm)
at the boundary of the magnetosphere is in equilibrium with the
pressure of the planetary field Bp(rm), we have:

B2
p (rm) = B2 (rm) , (5)

where rm is the position vector of a generic point on the bound-
ary of the magnetosphere. The planetary field can be assumed to
be that of a dipole, so that its variation with the distance ∆ from
the centre of the planet is:

Bp = Bp0

(
∆

Rp

)−3

, (6)

where Bp0 is the field at the poles of the planet and Rp its radius.
At the boundary of the magnetosphere, we have ∆ = Rm and,
considering Eq. (5), we find:

Rm = Rp




B
(
rp

)

Bp0




−1/3

, (7)

where B(rp) is the intensity of the ambient coronal field at the
position rp of the planet. Since the radius of the magnetosphere
is generally small in comparison with the lengthscale of vari-
ation of B in the outer stellar corona, we neglect the variation
of B across the magnetosphere and consider its intensity at the
location of the planet rp.

The power released by the magnetic reconnection at the
boundary of the planetary magnetosphere can be estimated as:

Prec " γrec
π

µ
B2
(
rp

)
R2

mvrel

= γrec
π

µ
R2

pB4/3
(
rp

)
B2/3

p0 vrel, (8)

where µ is the magnetic permeability of the plasma, 0 < γrec < 1
an efficiency factor that depends on the angle between the in-
teracting magnetic field lines (e.g., Priest 2003), vrel the rela-
tive velocity between the reconnecting magnetic field lines, i.e.,
the planetary and the stellar fields, and we have assumed that
an effective surface πR2

m is available for the interaction of the
reconnecting field lines.

The power dissipated in the reconnection process has been
estimated by Lanza (2009) to be of the order of 1017 W in

the case of a stellar dipolar potential field, i.e., insufficient
by ∼3 orders of magnitude. In Sect. 3, we shall see that con-
sidering force-free magnetic fields we can increase that power
by about two orders of magnitude in the most extreme cases.
This is still insufficient to account for the power irradiated by
the chromospheric hot spots. Therefore, we shall consider an-
other mechanism that can release greater powers by extracting
energy from a larger coronal volume, not only from that taking
part in the reconnection. This mechanism is connected with the
role of magnetic helicity in stellar coronae that we shall briefly
describe in the next section.

2.3. The role of magnetic helicity in stellar coronae
We assume that the Lorentz force is dominating over all the
other forces in the region of the stellar corona where a close-in
planet is located. This is valid provided that the ratio between the
plasma pressure and the magnetic pressure β ≡ 2µp/B2 is much
smaller than the unity in the considered coronal domain, as we
shall show in Sect. 3.1. With this assumption, the force-free ap-
proximation can be applied to describe the coronal field, i.e.,

∇ × B = αB, (9)

where the force-free parameter α is constant along each field
line, as immediately follows from the curl of the defining Eq. (9).
In general, αwill vary from one field line to the other (non-linear
force-free field). When it is constant for all the field lines, the
field is said to be a linear force-free field. We assume that the or-
bital motion of the planet and the associated plasma flow do not
significantly perturb the stellar field configuration which is de-
termined by the boundary conditions set at the base of the corona
on the stellar surface. If those boundary conditions evolve on a
timescale much longer than the Alfvén travel time across the
corona, the field can be assumed to be at each instant in a mag-
netostatic configuration as described by Eq. (9). Of course, the
force-free approximation is not valid at the stellar photosphere,
where the pressure of the plasma is comparable or greater than
the magnetic pressure, but we can assume that our low-beta ap-
proximation is valid starting from the base of the corona that
we assume for simplicity to coincide with the stellar surface be-
cause the photospheric and chromospheric pressure scale heights
are much smaller than the radius of the star. Note also that the
flux systems of the stellar corona and of the planetary magneto-
sphere are topologically separate because the planetary magnetic
field is potential close to the surface of the planet. Therefore,
a stationary magnetic field line that interconnects the planetary
field with the stellar coronal field would have a zero value of α
that is in general incompatible with the presence of electric cur-
rents flowing through the stellar corona. In other words, the field
lines of the planetary field must be confined within the plane-
tary magnetosphere and interact with the stellar field lines only
on the boundary of the magnetosphere where a time-dependent
reconnection occurs. A large-scale flux system interconnecting
the stellar and planetary fields in a low-beta regime is possible
only when the stellar coronal field is assumed to be potential as
in the models of Adams (2011) and Adams et al. (2011).

If the magnetic field is confined to some closed volume V ,
i.e., its field lines do not cross the boundary S of V , it is possible
to define a conserved quantity in ideal MHD called magnetic
helicity H:

H =
∫

V
A · B dV, (10)

where B = ∇ × A is the magnetic field and A its vector poten-
tial. H is a topological measure of the twisting of the magnetic
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Magne-c	  field	  configura-ons	  
•  The	  planet’s	  magne-c	  field	  is	  poten-al	  (α=0),	  so	  a	  sta-onary	  magne-c	  field	  line	  

connec-ng	  the	  surface	  of	  the	  star	  to	  the	  planet	  belongs	  to	  a	  poten-al	  field;	  
	  
•  On	  the	  other	  hand,	  the	  domains	  of	  the	  stellar	  field	  that	  are	  not	  poten-al	  cannot	  be	  

sta-onarily	  connected	  to	  the	  planet’s	  field	  because	  α	  is	  constant	  along	  a	  given	  
field	  line;	  

	  
•  In	  that	  case,	  the	  two	  flux	  systems	  (planetary	  and	  stellar)	  are	  topologically	  separate	  

from	  each	  other	  and	  interact	  only	  at	  a	  discon-nuity	  surface	  where	  there	  is	  
magne-c	  reconnec-on	  and	  energy	  release.	  	  	  

37	  





Evapora-on	  of	  planetary	  atmospheres	  
•  Vidal-‐Madjar	  et	  al.	  (2003,	  2004,	  2008),	  Linsky	  et	  al.	  (2010),	  and	  others	  found	  evidence	  of	  

deeper	  transits	   in	  Lyα	  and	  other	  FUV	  lines	  (e.g.	  Si	   III,	  C	   II)	  with	  depths	  2-‐3	  -mes	  larger	  
than	  in	  the	  op-cal	  band	  in	  HD	  209458,	  HD	  189733,	  and	  WASP-‐12;	  	  

	  
•  A	  remarkable	  -me	  variability	  has	  been	  found	  (e.g.,	  	  Lecavelier	  des	  Etangs	  2012);	  	  
	  
•  The	   absorbing	   material	   extends	   beyond	   the	   planet’s	   Roche	   lobe	   and	   has	   veloci-es	  

ranging	  from	  several	  tens	  of	  km/s	  up	  to	  ≈	  100-‐150	  km/s;	  

•  These	   observa-ons	   are	   interpreted	   as	   evidence	   of	   evapora-on	   of	   planetary	  
atmospheres;	  

	  
•  Haswell	  et	  al.	  (2012)	  extended	  the	  approach	  to	  NUV	  lines	  in	  the	  case	  of	  WASP-‐12.	  
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What	  powers	  atmospheric	  
evapora-on	  ?	  	  

•  The	  stellar	  EUV	  flux	  (≈	  1-‐100	  nm)	  has	  been	  iden-fied	  as	  the	  main	  source	  of	  
energy	  to	  power	  evapora-on;	  	  

	  
•  It	  depends	  on	  the	  stellar	  Teff	  and	  rota-on	  rate;	  
	  
•  It	  can	  vary	  remarkably	  along	  the	  ac-vity	  cycle	  (at	  least	  by	  a	  factor	  of	  2-‐3	  in	  

the	  Sun)	  and	  be	  enhanced	  during	  flares;	  
	  
•  Due	  to	  interstellar	  H	  absorp-on,	  it	  is	  difficult	  to	  es-mate	  (e.g.,	  Ribas	  et	  al.	  

2005;	   Lecavelier	  des	  Etangs	  2007;	   Sanz-‐Forcada	  et	   al.	   2011;	   Linsky	  et	   al.	  
2013).	  
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The	  intriguing	  cases	  of	  CoRoT-‐2	  
and	  HD	  189733	  

•  CoRoT-‐2	  and	  HD	  189733	  have	  visual	  M-‐type	  dwarf	  star	  companions	  whose	  age	  can	  
be	  es-mated	  from	  the	  level	  of	  their	  X-‐ray	  emission;	  

•  Values	  of	  several	  Gyr	  are	  derived	  (e.g.	  Guinan	  2013);	  	  
•  The	  same	  method,	  or	  gyrochronology,	  can	  be	  applied	  to	  es-mate	  the	  age	  of	  	  their	  	  

primaries	  that	  host	  hot	  Jupiters;	  
•  The	  ages	  of	  CoRoT-‐2	  and	  HD	  189733	  are	  thus	  es-mated	  to	  be	  ≈	  0.5	  Gyr	  and	  ≈1-‐1.5	  

Gyr,	  respec-vely;	  	  
•  Therefore,	   there	   is	   a	   remarkable	   discrepancy	   between	   these	   age	   es-mates	   and	  

those	   derived	   for	   the	   companions	   (Schröter	   et	   al.	   2011;	   Pillioeri	   et	   al.	   2014;	  
Poppenhaeger	  &	  Wolk	  2014);	  

•  Is	  the	  presence	  of	  the	  HJ	  affec-ng	  stellar	  rota-on	  ?	  	  
–  Pont	  (2009)	  proposed	  that	  close-‐in	  massive	  planets	  may	  spin	  up	  their	  hosts	  through	  -dal	  interac-on;	  
–  Lanza	   (2010)	   and	   Cohen	   et	   al.	   (2010)	   proposed	   that	   the	   planet	   may	   reduce	   the	   stellar	   angular	  

momentum	  loss	  rate	  by	  perturbing/modifing	  the	  stellar	  magne-zed	  wind.	  	  
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