# Deriving accurate surface gravity values for planet host stars

# Annelies Mortier

Nuno C. Santos, S.G. Sousa, V.Zh. Adibekyan, I.M. Brandão

Towards Other Earths II The Star-Planet Connection

17 September 2014, Porto







# Deriving accurate surface gravity values for planet host stars FGK dwarfs

# Annelies Mortier

Nuno C. Santos, S.G. Sousa, V.Zh. Adibekyan, I.M. Brandão

Towards Other Earths II The Star-Planet Connection

17 September 2014, Porto







# Outline

### Introduction

#### 2 Deriving stellar parameters

- Method
- Line list

#### Surface gravity determination

- Transits
- Asteroseismology
- Correction formulae
- Compare with IRFM

### Conclusions

## Introduction



Stellar and planetary characterization – Star-planet connection – Galactic evolution – . . .

Annelies Mortier (St Andrews)

Accurate loggs for FGK dwarfs

## Introduction



Annelies Mortier (St Andrews)

# Spectroscopic analysis: high-resolution spectroscopy



# Spectroscopic analysis: high-resolution spectroscopy



#### Individual spectral line analysis

## FGK stars - Method overview



## FGK stars - Method overview



## Carefully chosen stable line list set



(Tsantaki et al. 2013)

• Sousa et al. (2008) for stars with  $T_{eff} > 5200\,K$ • Tsantaki et al. (2013) for stars with  $T_{eff} \le 5200\,K$ 

SWEET-Cat: a catalog of stellar parameters for stars with planets

Download Data

|                 |              |             |              |      |         |       |      |                |      |         |      |         |            |               |      |       |        |           |      | _   |
|-----------------|--------------|-------------|--------------|------|---------|-------|------|----------------|------|---------|------|---------|------------|---------------|------|-------|--------|-----------|------|-----|
| Name            | HD<br>number | RA          | Dec          | Vmag | o(Vmag) | π     | σ(π) | Source<br>of π | Teff | σ(Teff) | logg | σ(logg) | LC<br>logg | σ(LC<br>logg) | Vt   | σ(Vt) | [Fe/H] | σ([Fe/H]) | Mass | σ(1 |
| 11 Com          | 107383       | 12 20 43.02 | +17 47 34.33 | 4.74 | 0.02    | 11.25 | 0.22 | Simbad         | 4830 | 79      | 2.61 | 0.13    |            |               | 1.70 | 0.10  | -0.34  | 0.06      | 2.00 | 0.1 |
| 11 UMi          | 136726       | 15 17 05.88 | +71 49 26.04 | 5.02 |         | 8.19  | 0.19 | Simbad         | 4340 | 70      | 1.60 | 0.15    |            |               | 1.60 | 0.80  | 0.04   | 0.04      | 1.80 | 0.1 |
| 14 And          | 221345       | 23 31 17.41 | +39 14 10.30 | 5.22 |         | 12.63 | 0.27 | Simbad         | 4773 | 100     | 2.53 | 0.10    |            |               | 1.64 | 0.30  | -0.26  | 0.11      | 1.45 |     |
| 14 Her          | 145675       | 16 10 24.31 | +43 49 03.52 | 6.67 |         | 56.91 | 0.34 | Simbad         | 5311 | 87      | 4.42 | 0.18    |            |               | 0.92 | 0.10  | 0.43   | 0.08      | 0.95 | 0.0 |
| 16 Cyg B        | 186427       | 19 41 51.97 | +50 31 03.08 | 6.20 |         | 47.14 | 0.27 | Simbad         | 5772 | 25      | 4.40 | 0.07    |            |               | 1.07 | 0.04  | 0.08   | 0.04      | 1.00 | 0.0 |
| 18 Del          | 199665       | 20 58 25.93 | +10 50 21.42 | 5.52 |         | 13.28 | 0.31 | Simbad         | 5076 | 38      | 3.08 | 0.10    |            |               | 1.32 | 0.04  | 0.00   | 0.03      | 2.33 | 0.0 |
| 24 Sex          | 90043        | 10 23 28.37 | -00 54 08.09 | 6.44 | 0.01    | 12.91 | 0.38 | Simbad         | 5069 | 62      | 3.40 | 0.13    |            |               | 1.27 | 0.07  | -0.01  | 0.05      | 1.81 | 0.0 |
| <u>30 Ari B</u> | 16232        | 02 36 57.74 | +24 38 53.02 | 7.09 |         | 24.52 | R.68 | Simbad         | 6377 | 170     | 4.49 | 0.05    |            | ÷             | κ.   |       | 0.14   | 0.18      | 1.16 | 0.0 |
| 4 Uma           | 73108        | 08 40 12.81 | +64 19 40.57 | 4.60 |         | 12.74 | 0.26 | Simbad         | 4564 | 100     | 2.28 | 0.10    |            |               | 1.69 | 0.30  | -0.16  | 0.13      | 1.48 |     |
| 42 Dra          | 170693       | 18 25 59.13 | +65 33 48.52 | 4.83 |         | 10.36 | 0.20 | Simbad         | 4513 | 100     | 2.24 | 0.10    |            |               | 1.59 | 0.30  | -0.39  | 0.12      | 1.74 |     |
| 47.Uma          | 95128        | 10 59 27.97 | +40 25 48.92 | 5.04 | 0.05    | 71.11 | 0.25 | Simbad         | 5954 | 25      | 4.44 | 0.10    |            |               | 1.30 | 0.04  | 0.06   | 0.03      | 1.04 | 0.0 |
| <u>51 Peg</u>   | 217014       | 22 57 27.98 | +20 46 07.79 | 5.46 | 0.05    | 64.07 | 0.38 | Simbad         | 5804 | 36      | 4.42 | 0.07    |            |               | 1.20 | 0.05  | 0.20   | 0.05      | 1.04 | 0.0 |
| 55 Cnc          | 75732        | 08 52 35.81 | +28 19 50.95 | 5.95 | 0.05    | 81.03 | 0.75 | Simbad         | 5279 | 62      | 4.37 | 0.18    |            |               | 0.98 | 0.07  | 0.33   | 0.07      | 0.93 | 0.0 |
| 6 Lyn           | 45410        | 06 30 47.10 | +58 09 45.48 | 5.88 |         | 17.92 | 0.47 | Simbad         | 4978 | 18      | 3.16 | 0.05    |            | -             | 1.10 | 0.07  | -0.13  | 0.02      | 1.70 | 0.3 |
|                 |              |             |              |      |         |       |      |                |      |         |      |         |            |               |      | (5    | Santo  | s et al.  | 2013 | 3)  |

Catalogue of homogeneously derived parameters for planet hosts

## Surface gravity from photometric transit

#### 90 transit hosts analysed



$$\rho_* + k^3 \rho_p = \frac{3\pi}{GP^2} \left(\frac{a}{R_*}\right)^3$$

Spectroscopic surface gravity not well constrained. Transit light curve surface gravity more precise and accurate



Mean differences

 $19\,K$  and  $0.02\,dex$ 

Mean absolute deviation 66.5 K and 0.03 dex

Systematic, but small trends, even for very large logg differences

## Transit logg may also be inaccurate (Huber et al. 2013)



Annelies Mortier (St Andrews)

#### 86 FGK stars analysed



Use large separation  $\Delta \nu$ , maximum frequency  $\nu_{max}$ , effective temperature  $T_{\rm eff}$ , metallicity [Fe/H], and PARSEC isochrones

Asteroseismic surface gravity more precise and accurate



Mean differences

68 K and 0.04 dex

Mean absolute deviation 28.5 K and 0.02 dex

Same systematic, but small trends as with the transit sample

## Linear correction formula



Correcting for the spectroscopic logg will not make it more precise, but it will make it more accurate!

## Comparison with accurate IRFM



Our unconstrained spectroscopic results can be trusted!

# Conclusions

- Precise, homogeneous, and accurate stellar parameters are crucial
- Our long-standing spectroscopic method to analyse **FGK stars** provides precise, accurate, and homogeneous results
- Surface gravity is not well constrained by spectroscopy but by using the ARES+MOOG method combined with SO08+TS13 line list set, there is only a marginal effect on the other atmospheric parameters
- $\bullet\,$  Planetary mass and radius differ only by 1.3-2% and 1-1.5%
- **Temperatures, metallicities, and microturbulences** developed by our method+linelist have been proven to be **consistent** with various methods
- Our spectroscopic surface gravity can be **easily corrected with a linear formula**

# Conclusions

- Precise, homogeneous, and accurate stellar parameters are crucial
- Our long-standing spectroscopic method to analyse **FGK stars** provides precise, accurate, and homogeneous results
- Surface gravity is not well constrained by spectroscopy but by using the ARES+MOOG method combined with SO08+TS13 line list set, there is only a marginal effect on the other atmospheric parameters
- $\bullet\,$  Planetary mass and radius differ only by 1.3-2% and 1-1.5%
- **Temperatures, metallicities, and microturbulences** developed by our method+linelist have been proven to be **consistent** with various methods
- Our spectroscopic surface gravity can be **easily corrected with a linear formula**

