The Search for Planets at Longer Wavelengths: Prospects, Challenges, and Surprises

Ansgar Reiners

Institut für Astrophysik Georg-August Universität Göttingen

Deutsche Forschungsgemeinschaft

Advantages at NIR

1. For red stars, redder spectra carry more information (Information advantage)

AB

2. At longer wavelength, activity impacts less (Jitter advantage)

Information advantage:

M-stars emit mostly at near-infrared wavelengths

visual-range Radial-Velocity instruments

Information advantage

Information advantage

2. Jitter advantage

2. Jitter advantage

Target: Hubble I 4

...but: the Zeeman effect

rule of thumb:
$$1 \frac{m}{s} * B/G * \lambda/\mu m$$

Example of magnetic field measurement

Quite obvious in <u>M-type stars</u> at <u>infrared wavelengths</u>

Here: R=30,000; SNR=100

Reiners & Basri, 2007

rule of thumb: $1 \frac{m}{s} * B/G * \lambda/\mu m$

How do contrast and Zeeman compare?

How do contrast and Zeeman compare?

f = 1%, B = 1000G, vsini = 2km/s

How do contrast and Zeeman compare?

HARPS observations of AD Leo

Further challenges: Size

Further challenges: Size ↓↓ Slicer

Bean et al., 2011

Very red stars are very faint example: CARMENES target characterization

V.M. Passegger (P6.3)

Credit: M. Cortéz-Contreras

Addison-Wesley

Which planets can we hope to find?

Towards longer wavelengths:

- 1. More photons but less features
- 2. Less contrast but more Zeeman
- Things we have to learn:
 Size, Slicing, Telluric lines, Detectors ...

