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Planets with no Solar System analogs . . . what possible compositions?



From just Mass and Radius:

courtesy of Eric Lopez



From just Mass and Radius:

courtesy of Eric Lopez

Have a wide range of 
possible compositions



From just Mass and Radius:

courtesy of Eric Lopez

Have a wide range of 
possible compositions

. . . what does the distribution look like?



From just Mass and Radius:

courtesy of Eric Lopez

Have a wide range of 
possible compositions

. . . what does the distribution look like?

Mordasini et al. 2012



From just Mass and Radius:

courtesy of Eric Lopez

Have a wide range of 
possible compositions

. . . what does the distribution look like?

Mordasini et al. 2012



Flat Mass-Radius Relations!
Earth-composition rocky core, H+He envelope

Lopez & Fortney, 2014



Flat Mass-Radius Relations!
Earth-composition rocky core, H+He envelope

Lopez & Fortney, 2014

Radius primarily determined by 
composition, not mass!
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Suggests a single 
mass-radius relationship 

may be misleading 
(little dependence on mass)
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Normal (i.e. χ2)

Internal Structure Models

Log-Normal

Execute hierarchical MCMC
(Gibbs sampling with 
Adaptive Metropolis 
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Parameters 
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Data
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in the parameters 

defining planet 
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Extreme caution needed in interpreting the observed radius distribution!

Detectio
n bias!

Applying to Kepler planets
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Observed all 12 quarters 
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Rocky-Gaseous Transition

A benefit of HBM: 
full posteriors on all the 
individual parameters,

 for free!!
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Mass-Radius PDF

Wolfgang, Rogers, & Ford, in prep.

For 
dynamical 
studies, 
can now 

accurately 
represent 
how much 
we know 
about a 
planet’s 
mass 

based on 
radius!
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4) Need probabilistic 
treatment to “convert” 

radii into masses.

3) Rocky-gas transition 
around ~ 1.5 REarth (agrees 
with Rogers et. al. 2014), 

and could be fuzzy
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Interpreting (M,R)
Inferring a composition requires modeling these planets’ internal structures:

Rogers et al. 2011

Intrinsic luminosity is set to a constant value on a grid
 . . . but how to determine an astrophysically appropriate value? 

Continuity: Hydrostatic Equilibrium: Equation of State:
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But a planet cools . . .

. . . at different rates 
depending on 

its mass!

Lopez & Fortney, 2014

Low-mass planets,
with low surface gravity,

also cool fastest . . .
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Why is this exciting?

Requires years of observations for 
good phase coverage; 

majority of Kepler targets too faint

Nesvorny et al. 2012

Radial Velocities: Transit Timing Variations:

Planets must be in resonances, 
 need high data cadence &

long time baselines

Can sidestep the need for expensive mass measurements!
(but need to assume rocky core with H+He envelope)

Marcy et al. 2014
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Well Suited to HBM!
“Regular” Bayes:

y = data
θ = the parameters of a model that can produce the data

p() = probability density [distribution] of; | = “conditional on”, or “given”
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HBM:  What is it?
Hierarchical Bayes:

Happens often for population studies: data tends to be “grouped” (hierarchical), 
and one value of θ may not be appropriate for all groups

What if there isn’t just one “true” value of θ for all the data?
i.e. θ has its own intrinsic distribution?

p(θ,α|y) ∝ p(y|θ,α) p(θ|α) p(α)
α = hyperparameters

(the parameters that describe the distribution of θ values)

p(θ|α) = this “intrinsic distribution” for the parameters

p(α) = prior probability of the hyperparameters

posterior likelihood “prior”

Adding another layer of probabilistic structure

can still use MCMC!
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Between-chain variance

Rhat = 1.08 Rhat = 1.03
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One last sanity check
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