Stellar Parameter Determination

Barry Smalley

Astrophysics Group Keele University Staffordshire ST5 5BG United Kingdom

Effective Temperature

$$\sigma T_{eff}^{4} \equiv \int_{0}^{\infty} F_{\nu} d\nu = F_{*} = \frac{L}{4\pi R^{2}}$$

- Temperature of a black body that gives the same total power per unit area.
- Physically related to F_* total radiant power per unit area at stellar surface.
- *T*_{eff} of star is temperature of blackbody with same luminosity and radius as the star

T_{eff}: Observable quantities

- f_{\oplus} total flux at earth (UV, optical, IR)
 - Corrected for interstellar reddening
- θ is angular diameter
 - Directly: interferometry, lunar occultations
 - Use limb-darkening corrected values
 - Indirectly from eclipsing binary systems with known distances (parallaxes): $\theta \propto R/d \propto R \pi$

... and asteroseismology !

Surface Gravity

- Directly given by stellar mass and radius.
 - An *indirect* measure of photospheric pressure
- Obtainable from:
 - Pairs (binary stars) R and M
 - Pulsations (astereoseismology) ρ and R
 - Planets (transits) Just ρ (but need M or R)

Fundamental Stars

- Fundamental stars can give accurate values of $T_{\rm eff}$ and log g for selected stars only.
 - Except for the Sun, good to no better than $1\sim2\%$
- Composition is *not directly* measured
 - Closest is the Sun via solar system material
 - Fe 7.50 ± 0.04 (photosphere) 7.45 ± 0.01 (meteorites) Asplund et al., 2009, ARA&A, 47, 481

Everything else is model dependent!

F,G and K Reference Stars

- For example, the GAIA Benchmark Stars
 - 34 Stars with well determined parameters
 - Not all have fundamental T_{eff} and log g.
 - Blanco-Cuaresma et al., 2014, A&A, 566, A98;
 - Jofre et al. 2014, A&A, 564, 133

Indirect Methods

- Direct determination is usually impractical for most stars.
- Have to use indirect methods:
 - Photometric calibrations
 - Infrared Flux Method
 - Spectrophotometric flux fitting
 - Balmer Profiles
 - Line ratios
 - Equivalent Width Analysis
 - Spectrum Synthesis

Equivalent Width

Small errors in continuum can lead to relatively large errors in EW

- Measure of number of absorbers
 - Abundance
 - No information on profile shape
- Measure EWs of spectral lines
 - Manually
 - Automatically (ARES, DAOSPEC)

- Avoid strong lines with wings
 - Profile truncation leads to underestimated EW

Metal Line Diagnostics

- log A versus Excitation Potential (T_{eff})
 - Abundances from the same element should agree for all excitation potentials, i.e. no trend
- log A versus EW (microturbulence)
 - Adjust V_{micro} until no trend with EW
- Ionization Balance (log g)
 - Average log A obtained from differing ionization stages of the same element <u>must</u> agree
 - Fe I/Fe II ratio can be used as a T_{eff} log g diagnostic

Effect of changing parameters

Wavelength range 5000-6000Å 5 < EW < 100 mÅ (avoid very weak or saturated lines)

Simulation Base model $T_{eff} = 6000 \text{ K}$ log g = 4.5 log A(Fe) = 7.50

Spectral Fitting

- Measuring equivalent widths might not always be practical.
 - Blending, high rotation, etc.
- Take all or selected parts of spectrum
- Vary input parameters and calculate synthetic spectrum.
- Fit best fitting solution (minizimize χ^2)
 - Error estimates are usually just internal precision

What about missing or incorrect line data?

X² Correlations

Simulation Base model $T_{eff} = 6000 \text{ K}$ log g = 4.5 log A(Fe) = 7.50

Generated with all lines with EW >5mÅ in wavelength range 5000-6000Å

Assumed S/N 100:1 for χ^2 calculation

A complex stellar recipe

Atomic/Molecular data

- Log gf, damping constants, missing/bad lines, hyperfine structure, isotopes
- Atmospheric Physics
 - NLTE, convection, turbulence, spots, abundance clouds
- Modelling Code internals
 - Partition functions, continuous opacities, numerical precision
- Analysis Methods
 - Equivalent widths, profile fitting, choice of lines and wavelength regions

Data Quality

- S/N, scattered light, continuum normalisation, telluric/interstellar lines

Stellar properties

- Binarity, variability

Plus other ingredients!

Pedagogical Heuristic Simulations

Collisional Broadening

- Ryan 1998 (A&A, 331, 1051)
 - Even weak lines can be affected by damping
 - Damping errors depend on excitation potential
 - errors in v_{mic} and T_{eff}

Effect of damping

- Effect of +20% error in van der Waals damping constant
 - could lead to errors in microturbulence and T_{eff}

Astrophysical gf values

- Line data is often inaccurate or missing
- Take spectrum of star with known properties and adjust synthesis line data until fits
 - Usually the Sun for late-type stars
 - Assume abundances are known
 - Mostly adjust just oscillator strengths (gf values)
- Widely-used and can give good results
 - But values do depend on model and assumed parameters.
 - Damping constants, microturbulence, convection, ...

Astrophysical gf Systematics

- Astrophysical gf values created at 6000 K but with +20% error in van der Waals damping.
 - Plots show difference in at 6500 K.

Microturbulence

- A *free* parameter introduced to ensure that abundances from weak and strong lines agree
- Extra source of line broadening
 - added to thermal broadening
 - Small scale motions within the atmosphere

Smalley 2004, IAUS 224, 131 based on Gray et al. 2001, AJ, 121, 2159

- Microturbulence varies with $T_{\rm eff}$
 - increases with increasing temperature
 - peaking around mid-A type

Solar Microturbulence Value

- Edvardsson et al. 1993 (A&A, 275, 101) 1.15 km/s
- Bruntt et al. 2010 (MNRAS, 405, 1907) 0.95 km/s
- Valenti & Fischer 2005 (ApJS, 159, 141) 0.85 km/s
- Santos et al. 2004, (A&A, 415, 1153) 1.00 km/s
- Magain 1984 (A&A, 134, 189) 0.85 km/s (centre of solar disk)
 - From Blackwell et al. 1984, (A&A,132, 236) using Holweger & Mueller 1974, (SoPh, 39, 19) Solar model

Which to use in Astrophysical *gf* determination?

Astrophysical gf Systematics

- Astrophysical *gf* values created at 6000 K but with microturbulence too low by 0.1 km/s.
 - 0.9 km/s instead of "true" 1.0 km/s
 - Plots show difference at 6500 K

Microturbulence Calibrations

Valenti & Fischer 2005 found:

"strongly correlated values of v_{mic} and [M/H], suggesting that v_{mic} and [M/H] are partially degenerate."

Adopted fixed value.

T_{eff} [K]

Gray 2001 fit by Smalley 2004, IAUS, 224, 131 Sousa 2011 is fit given in 2013, ApJ, 768, 79 Valenti & Fischer, 2005, ApJS, 159, 141 Bruntt et al., 2010, MNRAS, 405, 1907

Fixing log g can lead to incorrect other parameters

Surface Gravity from Spectroscopy

Smalley et al. 2012 A&A, 547, A61

Bruntt et al. 2012 MNRAS, 423, 122

Spectroscopic log g can be accurately determined to ±0.1 dex by spectral analysis alone!

Starspots

- Simulate a spotted star with 5% spot coverage.
- Take two models: T_{eff} = 6000 K and T_{eff} = 5000 K
 - Both with log g =4.5
- Generate spectra and combine 95% and 5%
- Fit with single *T*_{eff} model
- H_{α} gives 5950 K. Agrees with Stefan's Law:

 $(0.95 \times 6000^4 + 0.05 \times 5000^4)^{1/4} = 5953$

• But, what log g does Na D give?

Effect of "Spot" on Na D line

Spectroscopic log *g* overestimated in spotted stars?

Spots and EWs

 $T_{\rm eff}$ = 5953 K, log g = 4.5

 $T_{\text{eff}} = 5890 \text{ K}, \log g = 4.42$

- Effect on determination of T_{eff} and log g
 - depends on choice of lines.

Macroturbulence

Stellar granulation

A few Case Studies from the Literature

WASP-13

Spectroscopically-determined Stellar Parameters of WASP-13

					- ARES/ -	
		SME	UCLSYN	MOOG	MOOG	Weighted Mean [*]
Spread in value	S					~
		Unconstrained				
$T_{\rm eff}$ (K)	106	6003 ± 65	5955 ± 75	5919 ± 30	6025 ± 21	$5989 \pm 16 \pm 48$
$\log g$	0.17	4.16 ± 0.08	4.13 ± 0.11	4.02 ± 0.06	4.19 ± 0.03	$4.16 \pm 0.03 \pm 0.07$
$\log A(\text{Fe})$	0.06	$7.54\pm0.06^{\dagger}$	7.60 ± 0.09	$7.54\pm0.05^\dagger$	$7.58\pm0.05^\dagger$	$7.56 \pm 0.03 \pm 0.03$
[Fe/H]	[Fe/H]		$0.10\pm0.09^\dagger$	0.04 ± 0.02	0.08 ± 0.02	$0.06 \pm 0.01 \pm 0.03$
$v\sin i \; (\mathrm{km}\mathrm{s}^{-1})$		5.79 ± 0.08	5.26 ± 0.25			$5.74 \pm 0.08 \pm 0.38$
$v_{\rm t} ({\rm km s^{-1}})$		$1.01 \pm 0.17^{\ddagger}$	0.95 ± 0.10	1.53 ± 0.09	1.28 ± 0.10	$1.27 \pm 0.06 \pm 0.29$

- H_{α} 5950 ± 70 K; log g (Transit) 4.10 ± 0.04
- SPC: 5982 ± 50 K (Torres et al. 2012, ApJ, 757, 161)
- IRFM: 5935 ± 183 K

Gómez Maqueo Chew, et al., 2013, ApJ, 768, 79

Gaia-ESO Survey

- The analysis of 1301 FGK-type stars (2014arXiv1409.0568S)
- 13 independent groups and methods
 - All using MARCS models (no Kurucz ATLAS models)
- *Method-to-method dispersion* of the atmospheric parameters
 - T_{eff} 55 K, log g 0.13 dex, [Fe/H] 0.07 dex
- Systematic biases are estimated to be between
 - *T*_{eff} 50-100 K, log *g* 0.10-0.25 dex, [Fe/H] 0.05-0.10
- The typical method-to-method dispersion of elemental abundances varies between 0.10 and 0.20 dex.

All spectral analysis methods are well developed and yield satisfactory results

Θ Cygni

Guzik et al. In prep

Summary

- Analyses should include sufficient reference stars
 - use exactly the same methods and quality of spectra.
- Use as many diagnostics as possible
 - Spectroscopic and photometric.
- Realistically the typical errors:
 - $T_{eff} \pm 50 \sim 100 K$
 - $-\log g \pm 0.1 \sim 0.2 \text{ dex}$
 - Abundances $\pm 0.05 \sim 0.10$ dex

Errorbars in stellar analyses *usually* show how well the model fits to the data and <u>not</u> how good is the model.

High precision fitting to high S/N data is possible, but overall accuracy of parameters is less certain.