The Prevalence of Earth-Size Planets Orbiting Sun-Like Stars

Erik Petigura – UC Berkeley Toward Other Earths II, Porto, Portugal September 15, 2014

Collaborators: Geoff Marcy, Andrew Howard, Lauren Weiss, Howard Isaacson, Rea Kolbl, Lea Hirsch and many more Thanks to: UC Berkeley, IfA, Keck Observatory, NASA

Kepler Planet Haul

Addison Wesley (2004)

Kepler Planet Haul

Kepler Planet Haul

40,000 bright GK stars

Brightest GK stars

Brightest GK stars

7

40,000 bright GK stars

Search for significant transits using TERRA photometric pipeline

2184 TCEs

Optimized for small planet detection

In house pipeline enables measurement of planet detectability (completeness) via injection and recovery experiments

TERRA – optimized for small planets

Time domain preprocessing

- Start with raw photometry
- Gaussian process detrending
- Calibration
- Petigura & Marcy 2012

Transit search

- Matched filter
- Similar to BLS algorithm
- Leverages Fast-Folding Al (Staelin+ 68; Petigura+ 1.

Data validation

- Significant peaks in perio inconsistent with exoplar

Photometric errors common to many stars

TERRA – optimized for small planets

Time domain preprocessing

- Start with raw photometry
- Gaussian process detrending
- Calibration
- Petigura & Marcy 2012

Transit search

- Matched filter
- Similar to BLS algorithm (Kovcas+ 02)
- Leverages Fast-Folding Algorithm (Staelin+ 68; Petigura+ 13, in prep)

Data validation

- Significant peaks in periodogram, but inconsistent with exoplanet transit

Detrended/calibrated photometry

40,000 bright GK stars

Search for significant transits using TERRA photometric pipeline

2184 TCEs

2184 TCEs

Search for significant transits using TERRA photometric pipeline Q1–Q15

Remove non-astrophysical false positives

836 eKOIs

Search for significant transits using TERRA photometric pipeline

Remove non-astrophysical false positives

Remove astrophysical false positives

- Transit shape
- Secondary eclipse

Identifying eclipsing binaries using secondary eclipses

Identifying eclipsing binaries using secondary eclipses

Primary 7% dimming

Identifying eclipsing binaries using secondary eclipses

Search for significant transits using TERRA photometric pipeline

Remove non-astrophysical false positives

Remove astrophysical false positives

- Transit shape
- Secondary eclipse

574 (95%) KOIs (Nov 2013)

574 (95%) KOIs (Nov 2013)

597 (99%) KOIs (Jun 2014)

574 (95%) KOIs (Nov 2013)

597 (99%) KOIs (Jun 2014)

Keck HIRES spectra of 318 eKOIs

574 (95%) KOIs (Nov 2013)

597 (99%) KOIs (Jun 2014)

Keck HIRES spectra of 318 eKOIs

Keck spectra of all 62 candidates with P > 100 days

Keck HIRES Spectra

Better stellar parameters

- R_{*} good to 10%
 (photometry: 30%)
- L★ good to 25%
 (photometry: 80%)

Find false positives

- Detect second set of lines
- Kolbl and Marcy (2014)

10 Earth-size Candidates in HZ

10 Earth-size Candidates in HZ

9/10 are KOIs

10 Earth-size Candidates in HZ

9/10 are KOIs

Keck spectra of all 10

Completeness from Injection and Recovery

Planet occurrence size and orbital period

Planet occurrence size and orbital period

Planet size distribution

Planet size distribution

Planet size distribution

Orbital period distribution

Fraction of stars with planets of having different orbital periods

Planet occurrence size and incident flux

Summary

Independent search for planets in raw *Kepler* photometry (Q1-Q15) using TERRA pipeline

603 planet candidates found, 10 are Earth-size (1–2 R_E) and in HZ ($F_P = 0.25-4 F_E$)

Keck spectroscopy of all HZ candidates and all planet candidates with P > 100 days

Measured completeness using injection and recovery

22±8% of GK stars have 1–2 R_E planet in the HZ

Extra Slides

GK stars

The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets

ANDREW CUMMING,¹ R. PAUL BUTLER,² GEOFFREY W. MARCY,³ STEVEN S. VOGT,⁴ JASON T. WRIGHT,³ AND DEBRA A. FISCHER⁵

Received 2008 February 07; accepted 2008 March 20; published 2008 May 1

Orbital period distribution

Multiplicity Correction

84% 98% 98% 97% 98% 97% 98% 97% 96% 94% 92% 63% 10 98% 99% 97% 98% 98% 99% 98% 96% 96% 91% 85% 62% Planet Size [Earth-radii] 83% 98% 97% 97% 97% 95% 98% 90% 63% 98% 97% 92% 5 98% 97% 96% 96% 96% 88% 83% 64%98% 98% 97% 92% 4 3 96% 98% 94% 89% 84% 96% 95% 94% 92% 90% 78% 59% 93% 88% 93% 93% 92% 85% 85% 83% 76% 69% 60% 40% 2 85% 75% 87% 75% 73% 73% 64%55% 53% 34% 25% 13% 66% 53% 47% 44%35% 30% 22% 18% 10% 5% 4% 3% 1 1% 1% 1% 21% 21% 12% 9% 5% 6% 4% 1% 0% 01% **२**% በ% 1% በ% በ% 0% 0% 0% 0% 0.5 10 20 40 50 30 100 200 300 400 5 Orbital Period [days]

Completeness
THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS

COURTNEY D. DRESSING^{1,2} AND DAVID CHARBONNEAU¹ (Dated: February 25, 2013) Accepted to ApJ

temperatures. Our sample includes 2 Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is $0.15^{+0.13}_{-0.06}$ planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size

