Towards Other Earths II: The Star – Planet Connection, Porto, September 15-19th, 2014

Exoplanets at the E-ELT era

Gaël Chauvin

- IPAG/CNRS -Institute of Planetology & Astrophysics of Grenoble/France

ESO-Project Science Team, and E-ELT CAM, IFU, MIDIR, MOS, HIRES & PCS consortia

Exoplanets at the E-ELT era

I– The E–ELT project

- Telescope & context
- Instrumentation road map

II- Exoplanetary science

- 2.1 Study of planet-forming regions
- 2.2 Exoplanetary system characterization (Architecture, Formation, Atmosphere)

The E-ELT Project The Telescope

- **39-m class telescope**: largest **optical**infrared telescope in the world. (GMT = 25m; TMT = 30m)
- Novel 5 mirrors design
- Segmented-primary (M1) 800 segments, 1.4m size
- Adaptive assisted telescope M4 adaptive mirror, 5000 actuators
- Diffraction limited performance: 12mas@K-band; 7 arcmin patrol FoV
- Mid-latitude site (Amazones/Chile).
 Fast instrument changes.

The E-ELT & other competitive projects

Discoveries by opening a new parameter space

- Increased Sensitivity
- Spatial resolution (10 mas scale)

50m2 2 μm 50mas

400m2 18mas

600m2 14mas

1200m2(JWST: 25m2)10mas(JWST: 68mas)

Timeline: current/future missions

2012	2014	2016	2018	2020	2022	2024	2026	2028	2030
Groun Space: - VLT & K-MC - ALM/	d: Harps N/S Spitzer, Hers VLTI 2 nd & 3 DS, SPHERE, N A (ACA)	, SOPHIE, NaCo schel, Kepler, C rd generation AUSE, CRIRES+	o, VISIR, CRIRE oRoT , ESPRESSO, G	S, WASP, Spi RAVITY, MAT	rou, Carmenes	5			
	- GAIA -		- Cheops - TESS - SKA - JW	A 'ST	-	- PLATO - TMT - GMT - E-ELT	- WFIRST —		

Instruments - First Light	AO	Mode	λ (μm)	Resolution	FoV / Sampling	Add. Mode
E-CAM - 2024	SCAO, MCAO	- IMG - MRS	0.8 – 2.4	BB, NB 3000	53.0" / 3 mas	Astrometry 40µas Coronography
E-IFU - 2024	SCAO, LTAO	- IFU	0.5 – 2.4	4000 10 000 20 000	0.5×1.0" / 4mas 5.0×10.0" / 40mas	Coronography
E-MIDIR - 2025	SCAO LTAO	- IMG - MRS - IFU	3 - 13 3 - 13 3 - 5	BB, NB 5000 100 000	18" / 12 mas 0.4"×1.5" / 4 mas	Coronography Polarimetry
E-HIRES - 2026/2028	SCAO	- HRS	0.37 – 0.71 0.84 – 2.50	200 000 120 000	0.82″ 0.027″×0.5″	Polarimetry
E-MOS - 2026/2028	MOAO	Slits IFUs IFUs	0.37 – 1.4 0.37 – 1.4 0.8 – 2.45	300- 2500 5000 - 30 000 4000 - 10 000	6.8" / 0.1" 420' / 0.3" 2" / 40mas	Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging?
E-PCS - 2030/2032	XAO	EPOL IFS	0.6 – 0.9 0.95 – 1.65	125 – 20 000	2.0" / 2.3 mas 0.8" / 1.5 mas	Coronography Polarimetry

• 1st Light Instruments

Instruments - First Light	AO	Mode	λ (μm)	Resolution	FoV / Sampling	Add. Mode
E-CAM - 2024	SCAO, MCAO	- IMG - MRS	0.8 – 2.4	BB, NB 3000	53.0" / 3 mas	Astrometry 40µas Coronography
E-IFU - 2024	SCAO, LTAO	- IFU	0.5 – 2.4	4000 10 000 20 000	0.5×1.0" / 4mas 5.0×10.0" / 40mas	Coronography
E-MIDIR - 2025	SCAO LTAO	- IMG - MRS - IFU	3 - 13 3 - 13 3 - 5	BB, NB 5000 100 000	18" / 12 mas 0.4"×1.5" / 4 mas	Coronography Polarimetry
E-HIRES - 2026/2028	SCAO	- HRS	0.37 – 0.71 0.84 – 2.50	200 000 120 000	0.82″ 0.027″×0.5″	Polarimetry
E-MOS - 2026/2028	MOAO	Slits IFUs IFUs	0.37 – 1.4 0.37 – 1.4 0.8 – 2.45	300- 2500 5000 - 30 000 4000 - 10 000	6.8" / 0.1" 420' / 0.3" 2" / 40mas	Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging?
E-PCS - 2030/2032	XAO	EPOL IFS	0.6 – 0.9 0.95 – 1.65	125 – 20 000	2.0" / 2.3 mas 0.8" / 1.5 mas	Coronography Polarimetry

SCAO: single-conjugated AO

MCAO: Multi-Conjugated-AO

LTAO: Laser-Tomographic AO

MOAO: Multi-Object AO

• 2nd Pool Instruments

Instruments - First Light	AO	Mode	λ (μm)	Resolution	FoV / Sampling	Add. Mode
E-CAM - 2024	SCAO, MCAO	- IMG - MRS	0.8 – 2.4	BB, NB 3000	53.0" / 3 mas	Astrometry 40µas Coronography
E-IFU - 2024	SCAO, LTAO	- IFU	0.5 – 2.4	4000 10 000 20 000	0.5×1.0" / 4mas 5.0×10.0" / 40mas	Coronography
E-MIDIR - 2025	SCAO LTAO	- IMG - MRS - IFU	3 - 13 3 - 13 3 - 5	BB, NB 5000 100 000	18" / 12 mas 0.4"×1.5" / 4 mas	Coronography Polarimetry
E-HIRES - 2026/2028	SCAO	- HRS	0.37 - 0.71 0.84 - 2.50	200 000 120 000	0.82" 0.027"×0.5"	Polarimetry?
E-MOS - 2026/2028	ΜΟΑΟ	Slits IFUs IFUs	0.37 - 1.4 0.37 - 1.4 0.8 - 2.45	300- 2500 5000 - 30 000 4000 - 10 000	6.8" / 0.1" 420' / 0.3" 2" / 40mas	Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging?
E-PCS - 2030/2032	XAO	EPOL IFS	0.6 – 0.9 0.95 – 1.65	125 – 20 000	2.0" / 2.3 mas 0.8" / 1.5 mas	Coronography Polarimetry

SCAO: single-conjugated AO

MCAO: Multi-Conjugated-AO

LTAO: Laser-Tomographic AO

MOAO: Multi-Object AO

• XAO Instrument

Instruments - First Light	AO	Mode	λ (μm)	Resolution	FoV / Sampling	Add. Mode
E-CAM - 2024	SCAO, MCAO	- IMG - MRS	0.8 – 2.4	BB, NB 3000	53.0" / 3 mas	Astrometry 40µas Coronography
E-IFU - 2024	SCAO, LTAO	- IFU	0.5 – 2.4	4000 10 000 20 000	0.5×1.0" / 4mas 5.0×10.0" / 40mas	Coronography
E-MIDIR - 2025	SCAO LTAO	- IMG - MRS - IFU	3 - 13 3 - 13 3 - 5	BB, NB 5000 100 000	18" / 12 mas 0.4"×1.5" / 4 mas	Coronography Polarimetry
E-HIRES - 2026/2028	SCAO	- HRS	0.37 – 0.71 0.84 – 2.50	200 000 120 000	0.82" 0.027"×0.5"	Polarimetry
E-MOS - 2026/2028	ΜΟΑΟ	Slits IFUs IFUs	0.37 – 1.4 0.37 – 1.4 0.8 – 2.45	300- 2500 5000 - 30 000 4000 - 10 000	6.8" / 0.1" 420' / 0.3" 2" / 40mas	Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging?
E-PCS - 2030/2032	XAO	EPOL IFS	0.6 - 0.9 0.95 - 1.65	125 – 20 000	2.0" / 2.3 mas 0.8" / 1.5 mas	Coronography Polarimetry

SCAO: single-conjugated AO

MCAO: Multi-Conjugated-AO

LTAO: Laser-Tomographic AO

MOAO: Multi-Object AO

• Various AO Flavors

Instruments - First Light	AO	Mode	λ (μm)	Resolution	FoV / Sampling	Add. Mode
E-CAM - 2024	SCAO, MCAO	- IMG - MRS	0.8 – 2.4	BB, NB 3000	53.0" / 3 mas	Astrometry 40µas Coronography
E-IFU - 2024	SCAO, LTAO	- IFU	0.5 – 2.4	4000 10 000 20 000	0.5×1.0" / 4mas 5.0×10.0" / 40mas	Coronography
E-MIDIR - 2025	SCAO LTAO	- IMG - MRS - IFU	3 - 13 3 - 13 3 - 5	BB, NB 5000 100 000	18" / 12 mas 0.4"×1.5" / 4 mas	Coronography Polarimetry
E-HIRES - 2025/2028	SCAO	- HRS	0.37 – 0.71 0.84 – 2.50	200 000 120 000	0.82″ 0.027″×0.5″	Polarimetry
E-MOS - 2025/2028	ΜΟΑΟ	Slits IFUs IFUs	0.37 - 1.4 0.37 - 1.4 0.8 - 2.45	300- 2500 5000 - 30 000 4000 - 10 000	6.8" / 0.1" 420' / 0.3" 2" / 40mas	Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging?
E-PCS - 2030/2032	XAO	EPOL IFS	0.6 – 0.9 0.95 – 1.65	125 – 20 000	2.0" / 2.3 mas 0.8" / 1.5 mas	Coronography Polarimetry

SCAO: single-conjugated AO

MCAO: Multi-Conjugated-AO

LTAO: Laser-Tomographic AO

MOAO: Multi-Object AO

• Science Priority / Exoplanets

Instruments - First Light	AO	Mode	λ (μm)	Resolution	FoV / Sampling	Add. Mode
E-CAM - 2024	SCAO, MCAO	- IMG - MRS	0.8 – 2.4	BB, NB 3000	53.0" / 3 mas	Astrometry 40µas Coronography
E-IFU - 2024	SCAO, LTAO	- IFU	0.5 – 2.4	4000 10 000 20 000	0.5×1.0" / 4mas 5.0×10.0" / 40mas	Coronography
E-MIDIR - 2025	scao Ltao	- IMG - MRS - IFU	3 - 13 3 - 13 3 - 5	BB, NB 5000 100 000	18" / 12 mas 0.4"×1.5" / 4 mas	Coronography Polarimetry
E-HIRES - 2026/2028	SCAO	- HRS	0.37 – 0.71 0.84 – 2.50	200 000 120 000	0.82" 0.027"×0.5"	Polarimetry
E-MOS - 2026/2028	ΜΟΑΟ	Slits IFUs IFUs	0.37 – 1.4 0.37 – 1.4 0.8 – 2.45	300- 2500 5000 - 30 000 4000 - 10 000	6.8" / 0.1" 420' / 0.3" 2" / 40mas	Multiplex ~ 400 Multiplex ~100 Multiplex ~10 Imaging?
E-PCS - 2030/2032	XAO	EPOL IFS	0.6 – 0.9 0.95 – 1.65	125 – 20 000	2.0" / 2.3 mas 0.8" / 1.5 mas	Coronography Polarimetry

Low

Medium

High

Exoplanets at the E-ELT era

I– The E–ELT project

- Telescope & context
- Instrumentation road map

II- Exoplanetary science

- 2.1 Study of planet-forming regions
- 2.2 Exoplanetary system characterization (Architecture, Formation, Atmosphere)

2.1 Planet-forming regions Key Scientific Questions

. Star/disk Evolution

- o Accretion, Mass loss & Magnetic fields
- . Disk Structure & Dynamics
 - o Gas & Dust components
- . Composition & Chemistry:
 - o Water & Organics
- . Planetary Formation & Observation
 - o Initial conditions
- . Planets/Disk interactions

Fomalhaut ALMA/HST Bowler et al. 12

2.1 Planet-forming regions Accessing the AU to the sub-AU scale

2.1 Planet-forming regions Accessing the AU to the sub-AU scale

2.1 Planet-forming regions Star/Disk interactions

- Geometry of Accretion Channels
- Inner Disk Properties (Warp, asymmetries...)
- Role of Magnetic Fields (Config., Reconnection)
- Jet Launching Zone, Stellar & Disk Winds

E-MIDIR

E-HIRES

-IFU,

Spectro-astrometry E-ELT : 10 mas x 0.01 x 100pc = 0.01 AU = 2 Ro

Asymmetries/Spirals in proto-planetary disks

- E-MIDIR *simulations* of high-contrast imaging at **10 μm**.
- Jupiter footprint at 20 AU (@100pc) from G-star,
- Gap detection at a few mJy/as2 at 0.1-0.2" (10 – 20 AU)
- ELT-MIR very competitive with JWST

Grain differentiation with size Pressure Bump and dust trap Hot spot/Proto-planets

Asymmetries/Spirals in proto-planetary disks

- E-MIDIR *simulations* of high-contrast imaging at 10 μm.
- Jupiter footprint at 20 AU (@100pc) from G-star,
- Gap detection at a few mJy/as2 at 0.1-0.2" (10 – 20 AU)
- ELT-MIR very competitive with JWST

Grain differentiation with size Pressure Bump and dust trap Hot spot/Proto-planets

Asymmetries/Spirals in proto-planetary disks

- E-MIDIR *simulations* of high-contrast imaging at 10 μm.
- Jupiter footprint at 20 AU (@100pc) from G-star,
- Gap detection at a few mJy/as2 at 0.1-0.2" (10 – 20 AU)
- ELT-MIR very competitive with JWST

Grain differentiation with size Pressure Bump and dust trap Hot spot/Proto-planets

CAM, MIDIR

Asymmetries/Spirals in proto-planetary disks

- E-MIDIR *simulations* of high-contrast imaging at 10 μm.
- Jupiter footprint at 20 AU (@100pc) from G-star,
- Gap detection at a few mJy/as2 at 0.1-0.2" (10 – 20 AU)
- ELT-MIR very competitive with JWST

Grain differentiation with size Pressure Bump and dust trap Hot spot/Proto-planets

2.1 Planet-forming regions Gas Distribution & Dynamics

Proto-planetary disk of SR21 (Ophiucus, 160pc, 1 Myr)

Gap at 18 AU (sub-mm continuum emission Brown e al. 07)

E-ELT-MIDIR *simulations* of ¹²CO line emission at 4.7μm of SR21.
 Left: Continuum subtracted and velocity channel co-added
 Right: Velocity map with a resolving power of 100 000 (3 km/s)

2.1 Planet-forming regions Proto-planet direct detection

Proto-planetary disk in young SFRs (solar-type star, 150pc) 10 M_{Jup} protoplanet at 30 AU surrounded by a circumplanetary disk

• E--MIDIR *simulations* of ¹²CO line emission at 4.7μm, continuum subtracted

2.1 Planet-forming regions Gas Composition & Chemistry

Water & Organics

- Distribution and Dynamics
- Disk cooling & Planetesimals formation
- Organic/Prebiotic chemistry (CH4, C2H2, HCN...)
- Isotopic Fractionation
- Water Transfer to Terrestrial Planets

DR Tau, AS 205 N; Salyk et al. 08

Artist's View ESO-PR-1106

2.2 Exoplanets Characterization Key Scientific Questions

. Architecture of Planetary Systems

- Frequent of GP/Telluric planets
- Dynamical evolution/stability

. Formation/Internal Evolution of Young Planets

o Accretion history/Cooling

. Physics of Planetary Atmospheres

- Composition/Chemistry
- o Bio-Signatures Discovery

Architecture & Formation/Evolution

Exoplanets, current view (2014)

Architecture & Formation/Evolution

CAM, IFU, MIDIR, PC.

Architecture & Formation/Evolution

Young Jupiters Properties/History

Physics of Giant Planets

CAM, IFU, MIDIR, PC

- Observables: Luminosity
- Orbital properties: a, e, i,
- Complementarity RV, Astr...
 > Access Dynamical Mass

Bpic; Lagrange et al. 09, 10, Chauvin et al. 12 Bonnefoy et al. 14

Young Jupiters Properties/History

Physics of Giant Planets

- Observables: Luminosity
- Orbital properties: a, e, i,
- Complementarity RV, Astr...
 > Access Dynamical Mass

Formation/Cooling Evolution

- Lum. Mass parameter space
- Calibrate model predictions
- Gas Accretion History Presence of a core

-2No Accretion Shock Hot start log L -6 Accretion Shock Cold-start -8 T T T T T T T T T T -10108 1010 10^{5} 106 107 10⁹ Time [yrs]

Mordasini et al. 12

Physics of the Planetary Atmosphere

Wide orbit self-lum. planets

- High-contrast LRS
- High-contrast + HDS

Close-in Irradiated planets

- Transmission/Eclipse LRS
- HDS

i/ High-Contrast Low-Resolution Spectroscopy

- Contrast Goal: 10⁻⁶ (50mas) to 10⁻⁹ (20mas) Targets: M-dwarfs, young stars
- Emitted (E-IFU, MIDIR) and Reflected (E-PCS) light of giant icy planets (Super-Earths?)
- Broad molecular absorptions: H2O, CO, CH4, NH3, CO2...

i/ High-Contrast Low-Resolution Spectroscopy

- Contrast Goal: **10**⁻⁶ (50mas) to **10**⁻⁹ (20mas) Targets: **M-dwarfs, young stars**
- Emitted (E-IFU, MIDIR) and Reflected (E-PCS) light of giant icy planets (Super-Earths?)
- Broad molecular absorptions: H2O, CO, CH4, NH3, CO2...

Beta Pic b – GPI and SPHERE Observations in J-band (Res = 50) 8 – 13 M_{Jup} planet, 9 AU; T_{eff} = 1650 +- 150K, log(g) = 4.0±0.5 and R = 1.3+-0.2 R_{Jup} H2O, FeH absorptions (Bonnefoy et al. 14)

ii/ MOS Transit Medium-Resolution Spectroscopy

- Photometric accuracy Goal: 10-6

- Targets: M dwarfs

- Search for bio-signatures to telluric planets
- Complementarity to JWST in visible: Presence of Haze

ii/ MOS Transit Medium-Resolution Spectroscopy

- Photometric accuracy Goal: 10-6

```
- Targets: M dwarfs
```

- Search for bio-signatures to telluric planets
- Complementarity to JWST in visible: Presence of Haze

GJ3470 b – Keck/MOSFIRE; FoV = 6' x 6'; Reference stars; Spectral range= $2.0 - 2.4 \mu m$; Resolution = 3500 (OH lines); 10^{-4} photometric precision; Hot Neptune Transmission spectrum looks flat! Suggests hazes and/or disequilibrium chemistry

iii/ High-Dispersed Spectroscopy

- Contrast: **10**⁻⁵ Targets: **bright stars with close-in planets (>40)**
- Search for molecular absorptions of CO, H2O, CH4, NH3...
- Mass, inclination, thermal inversion, C/O ratio, atmosphere circulation... rotation

iv/ XAO High-Contrast + High-Dispersed Spectroscopy

- Powerful technique, capable to characterize rocky planets in HZ?
- Reflected light (from **10**⁻⁴ **to 10**⁻⁹ **contrast**); Search for O2 and bio-signatures...

Snellen et al. 13 and Talk

iv/ XAO High-Contrast + High-Dispersed Spectroscopy

- Powerful technique, capable to characterize rocky planets in HZ?
- Reflected light (from **10**⁻⁴ **to 10**⁻⁹ **contrast**); Search for O2 and bio-signatures...
- Doppler imaging mapping of Exoplanets: Cloud/Molecular Coverage

(Crossfield et al. 14)

Conclusions

• The E-ELT project

- > Unique Spatial resolution & sensitivity
- > Offering a versatile instrumentation
- (wavelengths coverage, modes, spatial/spectral resolution...)
 > Will count on new discoveries (ALMA, SPHERE, GPI, GAIA, TESS...)
 > Mostly aimed at **Characterizing**, but not only...

Exoplanetary science

- > Observing planet-forming regions (0.01 10 AU scale)
- > Initial conditions for planetary formation
 - (Disk Structure, Composition & Chemistry)
- > Overlap btw observing techniques
 - Architecture of planetary systems (Global view)
 - Physics of Young Jupiters (Formation, Accretion)
- > Atmospheres
 - Giant/Icy to Sper-Earths,
 - T/P structure, composition, C/O ratio, cloud coverage & variab.... Path toward characterization of exo-Earths atmospheres

© Julien Girard 2014

Planetary Atmospheres

- Reflected, Transmitted or Emitted light of Exoplanets
- Strongly or non-strongly irradiated planets
- Physics of Planetary Atmospheres (Giant, Exo-Neptunes to Super-Earths)
 - Geometric Albedos
 - Chemical Composition (H20, CH4, CO, CO2, NH3...)
 - Atmosphere's Dynamics
 - . Inversion,
 - . Vertical Mixing,
 - . Circulation,
 - . Evaporation,
- Imprints of Formation Mechanisms?

E-MIDIR, HIRES

iii/ High-Dispersed Spectroscopy

