Detailed characterization of stars with planets

Hans Kjeldsen, Aarhus University

Detailed characterization of stars with planets

- Characterizing exoplanets and their atmospheres requires in most cases detailed knowledge of the host star.
- Several techniques are available for measurement of global stellar properties and some of those offer possibilities to characterize the host stars at a very detailed level.
- I will in this talk especially focus on the use of asteroseismology to measure global properties

Asteroseismology

- Mean **density better than 1%**
- Mass (more accurate if we also have [Fe/H] and Teff) – better than 5-8%
- **Radius** from Mass and density better than 2-3%
- Surface gravity from Radius and density better than 3%
- Age / Evolutionary stage better than 10% of turnoff age
- Rotation period, inclination axis, differential rotation

Observational Asteroseismology: Observables

- Oscillation frequencies and frequency differences/ratios/splittings
- Oscillation mode identification (degree, order and mode type; g/p/f, mixed)
- Oscillation mode properties (amplitude, amplitude ratios, phase, phase differences, life time, ...)
- Changes (short term and long term) in mode parameters (frequencies, amplitudes, ...)

Mode degree: {

Power Spectrum of a time series

White et al. 2011

Asteroseismology

- Mean density –
- Mass (more accu Teff) – better that
- Radius from Ma:
- Surface gravity f than 3%
- Age / Evolutiona off age

Rotation period, inclination axis, differential rotation

Levels of detection

- Excess power (and frequency at max. Power)
- p-mode signature (large separation)

Detailed p-mode structure (small separation)

Levels of detection

- Excess power (and frequency at max. Power)
- p-mode signature (large separation)
- Detailed p-mode structure (small separation)
- Individual frequencies (Echelle diagram)

White et al. 2012

FIG. 1.— Power spectra of (a) a G star, KIC 6933899, and (b) an F star, KIC 2837475, with their corresponding échelle diagrams (c) and (d), respectively. The red curves show the power spectra after smoothing. Mode identification of the G star is trivial, with modes of l = 0 (orange), 1 (blue) and 2 (green) labelled. For the F star it is not clear whether the peaks labelled 'A' (blue) or 'B' (orange) correspond to the l = 1 or l = 0, 2 modes.

Chaplin et al. 2011

Chaplin et al. 2011

Asteroseismology

- Mean **density better than 1%**
- Mass (more accurate if we also have [Fe/H] and Teff) – better than 5-8%
- Radius from Mass and den
- Surface gravity from Radiu than 3%
- Age / Evolutionary stage off age

Rotation period, inclination axis, differential rotation

Asteroseismic fundamental properties of solar-type stars observed by the NASA *Kepler* Mission

W. J. Chaplin^{1,2}, S. Basu³, D. Huber^{4,5}, A Serenelli⁶, L. Casagrande⁷, V. Silva Aguirre²,
W. H. Ball^{8,9}, O. L. Creevey^{10,11}, L. Gizon^{9,8}, R. Handberg^{1,2}, C. Karoff², R. Lutz^{8,9},
J. P. Marques^{8,9}, A. Miglio^{1,2}, D. Stello^{12,2}, M. D. Suran¹³, D. Pricopi¹³, T. S. Metcalfe^{14,2},
M. J. P. F. G. Monteiro¹⁵, J. Molenda-Żakowicz¹⁶, T. Appourchaux¹¹,
J. Christensen-Dalsgaard², Y. Elsworth^{1,2}, R. A. García¹⁷, G. Houdek², H. Kjeldsen²,
A. Bonanno¹⁸, T. L. Campante^{1,2}, E. Corsaro^{19,18}, P. Gaulme²⁰, S. Hekker^{21,9},
S. Mathur^{14,22}, B. Mosser²³, C. Régulo^{24,25}, D. Salabert²⁶

Levels of detection

- Excess power (and frequency at max. Power)
- p-mode signature (large separation)
- Detailed p-mode structure (small separation)
- Individual frequencies (Echelle diagram)

For exoplanets we often have to deal with low-SNR oscillations

From Chaplin et al. 2013

From Chaplin et al. 2013

Measurement of Large Separation

- Power of power
- Auto Correlation
- Comb response / Match filter (using the asymptotic relation)

PHOTOMETRICALLY DERIVED MASSES AND RADII OF THE PLANET AND STAR IN THE TrES-2 SYSTEM

THOMAS BARCLAY^{1,2}, DANIEL HUBER^{1,11}, JASON F. ROWE^{1,3}, JONATHAN J. FORTNEY⁴, CAROLINE V. MORLEY⁴, ELISA V. QUINTANA^{1,3}, DANIEL C. FABRYCKY^{4,12}, GEERT BARENTSEN⁵, STEVEN BLOEMEN⁶, JESSIE L. CHRISTIANSEN^{1,3}, BRICE-OLIVIER DEMORY⁷, BENJAMIN J. FULTON⁸, JON M. JENKINS^{1,3}, FERGAL MULLALLY^{1,3}, DARIN RAGOZZINE⁹, SHAUN E. SEADER^{1,3}, AVI SHPORER^{8,10}, PETER TENENBAUM^{1,3}, AND SUSAN E. THOMPSON^{1,3}

PHOTOMETRICALLY DERIVED MASSES AND RADII OF THE PLANET AND STAR IN THE TrES-2 SYSTEM

THOMAS BARCLAY^{1,2}, DANIEL HUBER^{1,11}, JASON F. ROWE^{1,3}, JONATHAN J. FORTNEY⁴, CAROLINE V. MORLEY⁴, ELISA V. QUINTANA^{1,3}, DANIEL C. FABRYCKY^{4,12}, GEERT BARENTSEN⁵, STEVEN BLOEMEN⁶, JESSIE L. CHRISTIANSEN^{1,3}, BRICE-OLIVIER DEMORY⁷, BENJAMIN J. FULTON⁸, JON M. JENKINS^{1,3}, FERGAL MULLALLY^{1,3}, DARIN RAGOZZINE⁹, SHAUN E. SEADER^{1,3}, AVI SHPORER^{8,10}, PETER TENENBAUM^{1,3}, AND SUSAN E. THOMPSON^{1,3}

KEPLER'S FIRST ROCKY PLANET: KEPLER-10b*

NATALIE M. BATALHA¹, WILLIAM J. BORUCKI², STEPHEN T. BRYSON², LARS A. BUCHHAVE³, DOUGLAS A. CALDWELL⁴,
JØRGEN CHRISTENSEN-DALSGAARD^{5,6}, DAVID CIARDI⁷, EDWARD W. DUNHAM⁸, FRANCOIS FRESSIN³, THOMAS N. GAUTIER III⁹,
RONALD L. GILLILAND¹⁰, MICHAEL R. HAAS², STEVE B. HOWELL¹¹, JON M. JENKINS⁴, HANS KJELDSEN⁵, DAVID G. KOCH²,
DAVID W. LATHAM³, JACK J. LISSAUER², GEOFFREY W. MARCY¹², JASON F. ROWE², DIMITAR D. SASSELOV³, SARA SEAGER¹³,
JASON H. STEFFEN¹⁴, GUILLERMO TORRES³, GIBOR S. BASRI¹², TIMOTHY M. BROWN¹⁵, DAVID CHARBONNEAU³,
JESSIE CHRISTIANSEN², BRUCE CLARKE⁴, WILLIAM D. COCHRAN¹⁶, ANDREA DUPRE³, DANIEL C. FABRYCKY³, DEBRA FISCHER¹⁷,
ERIC B. FORD¹⁸, JONATHAN FORTNEY¹⁹, FORREST R. GIROUARD²⁰, MATTHEW J. HOLMAN³, JOHN JOHNSON²¹, HOWARD ISAACSON¹²,
TODD C. KLAUS²⁰, PAVEL MACHALEK⁴, ALTHEA V. MOOREHEAD¹⁸, ROBERT C. MOREHEAD¹⁸, DARIN RAGOZZINE³,
PETER TENENBAUM⁴, JOSEPH TWICKEN⁴, SAMUEL QUINN³, JEFFREY VANCLEVE⁴, LUCIANNE M. WALKOWICZ¹²,
WILLIAM F. WELSH²², EDNA DEVORE⁴, AND ALAN GOULD²³

Batalha et al. 2011: 275d

Large frequency separation

Mass (Msun) Radius (Rsun) Age (Gyr)

0.995 ± 0.060	(6%)
1.056 ± 0.021	(2%)
11.9 ± 4.5	(38%)

- Batalha et al. 2011

Analysis of more than two years of data....

Accurate parameters of the oldest known rocky-exoplanet hosting system: Kepler-10 revisited

Alexandra Fogtmann-Schulz, Brian Hinrup, Vincent Van Eylen, Jørgen Christensen-Dalsgaard, Hans Kjeldsen, Víctor Silva Aguirre, and Brandon Tingley Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark.

Mass (Msun) 0.995 ± 0.060 Radius (Rsun) 1.056 ± 0.021 Age (Gyr) 11.9 ± 4.5

- Batalha et al. 2011

Mass (Msun) 0.913 ± 0.022 Radius (Rsun) 1.065 ± 0.009 Age (Gyr) 10.4 ± 1.4

- All data to date

Kepler-10:

Mass (Msun)	0.913 ± 0.022	(2.4%)
Radius (Rsun)	1.065 ± 0.009	(0.85%)
Age (Gyr)	10.4 ± 1.4	(13%)

Kepler-10b:

Rplanet/Rstar	0.01254 ± 0.00013	(1.0%)
Rplanet/REarth	1.451 ± 0.019	(1.3%)

The key is to extend the length of the time series or observe bright targets with high SNR

Asteroseismology

- Mean density -
- Mass (more acc Teff) – better th
- Radius from Ma
- Surface gravity than 3%
- Age / Evolutiona off age

HAT-P-7b

Determination of Three-dimensional Spin–orbit Angle with Joint Analysis of Asteroseismology, Transit Lightcurve, and the Rossiter–McLaughlin Effect: Cases of HAT-P-7 and Kepler-25

Othman BENOMAR¹, Kento MASUDA², Hiromoto SHIBAHASHI¹, and Yasushi SUTO^{2,3}

Asteroseismic inference on the spin-orbit misalignment and stellar parameters of HAT-P-7

Mikkel N. Lund^{1*}, Mia Lundkvist^{1,2}, Victor Silva Aguirre¹, Günter Houdek¹, Luca Casagrande³, Vincent Van Eylen¹, Tiago L. Campante^{5,1}, Christoffer Karoff^{4,1}, Hans Kjeldsen¹, Simon Albrecht¹, William J. Chaplin^{5,1}, Martin Bo Nielsen^{6,7}, Pieter Degroote⁸, Guy R. Davies^{5,1}, and Rasmus Handberg^{5,1}

75°

45°

30°

0°

Asteroseismic inference on the spin-orbit misalignment and stellar parameters of HAT-P-7

Mikkel N. Lund^{1*}, Mia Lundkvist^{1,2}, Victor Silva Aguirre¹, Günter Houdek¹, Luca Casagrande³, Vincent Van Eylen¹, Tiago L. Campante^{5,1}, Christoffer Karoff^{4,1}, Hans Kjeldsen¹, Simon Albrecht¹, William J. Chaplin^{5,1}, Martin Bo Nielsen^{6,7}, Pieter Degroote⁸, Guy R. Davies^{5,1}, and Rasmus Handberg^{5,1}

Prospects for *p*-mode detection

Detection of p-modes

- Amplitude
- SNR

Huber et al. 2011

Chaplin et al. 2011

$$V_{\text{limit}} = 11.6 + 1.25 \cdot \log_{10}(T_{obs} / yr) + 4 \cdot \log_{10}(L / L_{sun})$$

- 7 \cdot \log_{10}(M / M_{sun}) - 5 \cdot \log_{10}(T_{eff} / 5778K)
+ 5 \cdot \log_{10}(D / m)

TESS targets based on HIPPARCOS (Chaplin 2013)

Amplitudes of stellar oscillations and granulation will be lower in TESS than in Kepler/K2

Figure 1. The TESS spectral response function (black line), defined as the product of the long-pass filter transmission curve and the detector quantum efficiency curve. Also plotted, for comparison, are the Johnson-Cousins V, R_C , and I_C filter curves and the SDSS z filter curve. Each of the functions has been scaled to have a maximum value of unity.

From: Ricker, Winna, Vanderspek and Latham et al. arXiv:1406.0151v1 [astro-ph.EP] 1 Jun 2014

Figure 8. Top.—Expected 1σ photometric precision as a function of stellar apparent magnitude in the I_C band. Contributions are from photon-counting noise from the target star and background (zodiacal light and unresolved stars), detector read noise (10 e^-), and an assumed 60 ppm of incorrigible noise on hourly timescales.

From: Ricker, Winna, Vanderspek and Latham et al. arXiv:1406.0151v1 [astro-ph.EP] 1 Jun 2014

Simulations done by Bill Chaplin (2014)

A number of stars will be observed for extended periods

Figure 7. Left.—The instantaneous combined field of view of the four *TESS* cameras. Middle.—Division of the celestial sphere into 26 observation sectors (13 per hemisphere). Right.—Duration of observations on the celestial sphere, taking into account the overlap between sectors. The dashed black circle enclosing the ecliptic pole shows the region which *JWST* will be able to observe at any time.

From: Ricker, Winna, Vanderspek and Latham et al. arXiv:1406.0151v1 [astro-ph.EP] 1 Jun 2014

Simulations done by Bill Chaplin (2014)

Simulations done by Bill Chaplin (2014)

