Exoplanet atmosphere Spectroscopy present observations and expectations for the ELT

Ignas Snellen, Leiden University

Matteo Brogi, Jayne Birkby, Henriette Schwarz, Emanuele di Gloria, Anna-Lea Lesage, Julien Spronck (Leiden),Remco de Kok (SRON), Simon Albrecht (Aarhus), Ernst de Mooij (Toronto) Remko Stuik, Rudolf le Poole, Gilles Otten, Matthew Kenworthy, Christoph Keller, Jens Hoeijmakers (Leiden)

Challenges for Ground-based Observations

Measure <10⁻³⁻⁴ variations in flux as function of λ over 1-5 hour time scales Transits and Secondary Eclipses

Earth Atmosphere:

- o Variations in turbulence / seeing
- Variations in absorption & scattering
- Variations in thermal sky emission Instrumental:
- Variations in gravity vector or field rotation
 Variations in thermal behaviour

Solutions for Ground-based Observations

Measure <10⁻³⁻⁴ variations in flux as function of λ over 1-5 hour time scales Transits and Secondary Eclipses

Observe target + reference stars simultaneously

Atmospheric variations similar for target & refs

Different optical paths through telescope + instruments

Solutions for Ground-based Observations

<u>High-Dispersion Spectroscopy (λ/Δλ=100,000)</u>

- Molecular Bands are resolved in tens of individual lines
- Strong Doppler effects due to orbital motion of the planet (upto >150 km/sec)
- o moving planet lines can be distinguished from stationary telluric & stellar lines

HD209458b in transmission, CO -2.3 um

CO in transmission in HD209458b (CRIRES@VLT) (Snellen et al. *Nature* 2010)

- Reveals planet orbital velocity
- Solves for masses of both planet and star (model independent)
- Evidence for blueshift (high altitude winds?)

CO in dayside spectrum of tau Bootis b (CRIRES@VLT)

(Brogi et al. *Nature* 2012 – see also Rodler et al. 2012)

CO in dayside spectra of hot Jupiters

Carbon monoxide and water vapour in the atmosphere of the non-transiting exoplanet HD 179949 b*

M. Brogi¹, R. J. de Kok^{1,2}, J. L. Birkby¹, H. Schwarz¹, and I. A. G. Snellen¹

- Orbital inclinations and masses of >100 non-transiting planets
- Detection of the individual lines (instead of cross-correlation)
 T/P profile; unambigous detections of inversion layers
- Line broadening \rightarrow planet rotation and circulation

- Molecular spectra (CO, CO2, H2O, CH4) as function of orbital phase
 → photochemistry, T/P versus longitude
- Isotopologues? \rightarrow evolution of planet atmosphere

The Ultimate ELT Science Case: Characterizing twin-Earths
too high background for 9.6 um Ozone
O₂ in transmission is possible!

Stellar	R*	M_*	a_{HZ}	Prob	\mathbf{P}_{HZ}	Dur.	I ($\eta_e=1$)	Line	SNR	Time
$_{\mathrm{type}}$	$\left[R_{\mathrm{sun}}\right]$	$\left[M_{\rm sun}\right]$	[au]	[%]	[days]	[hrs]	[mag]	$\operatorname{Contrast}$	σ	(yrs)
G0-G5	1.00	1.00	1.000	0.47	365.3	13	4.4 - 6.1	2×10^{-6}	1.1 - 2.5	80-400
M0-M2	0.49	0.49	0.203	1.12	47.7	4.1	7.3 - 9.1	8×10^{-6}	0.7 - 1.5	20-90
M4-M6	0.19	0.19	0.058	1.52	11.8	1.4	10.0-11.8	5×10^{-5}	0.7-1.7	4-20
						_				

Snellen et al. 2013

Brightest expected systems

SNR for ELT in 1 transit

What about dayside spectroscopy?

Combining High-Dispersion Spectroscopy (HDS) with High Contrast Imaging (HCI)

How far can we push this with the ELTs?

Comparison to "classical" high-contrast imaging

This idea is <u>not</u>new (at lower resolution) Sparks & Ford 2003 Konopacky et al. 2013

All the light in this image has the spectrum of the star, except that from the planet Speckles can be removed (down to <1^e-5 level)

Here SDI and ADI work well

Kuzuhara et al. 2013, K-band

E-ELT simulations - CASE 1 A Super-Earth in the Habitable Zone of Cen A at 4.85 um METIS+E-ELT PSF simulation in M-band (Strehl=0.9), baseline METIS set-up. 30 hours Earth-spectrum, T=300 K, 1.5 R_earth.

E-ELT simulations - Optical IFU (HIRES/PCS) CASE 2: A Super-Earth in the Habitable Zone of Proxima

E-ELT (Strehl=0.5), 10 hours, R=100,000, $\Delta \lambda = 600 - 900$ nm Earth-spectrum, T=280 K, 2 R_earth.

SNR Map

Snellen et al. In prep

Contrast Map star planet

Planet spectrum is a copy of that of the star, but velocity shifted

Can we test this with current instrumentation?

Snellen, Brandl, de Kok, Brogi, Birkby, Schwarz Nature – May 2014

Beta Pictoris b – CRIRES@VLT

1 hour DDT time (1-1.3" seeing) 22x4x10 seconds

Fast spin of a young extrasolar planet

Snellen et al. - embargoed

Length of Day on Beta Pictoris b = ~8 hours

Leiden University