Machine Learning Approaches to Vetting Transiting Planet Signatures in Photometric Light Curves

Jon M. Jenkins

NASA Ames Research Center

Sean McCauliff, Joseph Catanzarite, Sean Seader, Joseph Twicken & Dwight Sanderfer

Monday September 15, 2014

Toward Other Earths II

Porto, Portugal

NASA's 1995 ExNPS Report

Transit Photometry not Recommended

Software Revision: svn+ssh://murzim/repo/soc/tags/release/8.3.1@49247 -- Date Generated: 30-Oct-2012 16:27:15 Z

30-Oct-2012

A Stack of DV Reports

...would reach ~140 stories high

A Plague of Planet-like Signatures

Hardware Architecture

Original computing clusters had ~500 computer cores

It would take ~2 years to re-process all Kepler data here

Hardware Architecture

NAS Pleiades Supercomputer has >126,000 computer cores

It takes ~2 months to re-process all Kepler data now

Distribution of TCEs

Log₁₀ Orbital Period, Days

Image artifacts cause a large number of TCEs at 1 year periods!

Random Forests for Auto-vetting

Planet, or dud?

Leonid Kulik Expedition

Random Forests for Auto-vetting

Planet, dude!

Leonid Kulik Expedition

<section-header>

maxME8 < 8.06

N

Ы

¹Breiman, Leo (2001), "Random Forests", Machine Learning **45** (1): 5–32

¹Breiman, Leo (2001), "Random Forests", Machine Learning **45** (1): 5–32

"Planet Candidate" class established

- 1. Using confirmed and validated Kepler planets
- 2. Using planet candidates identified by TCERT

"Astrophysical False Positive" class established

- 1. Using list of eclipsing binaries from EBWG (less PCs)
- 2. Using period/epoch collisions (as per Coughlin et al. 2014 AJ 147)

"Non-Transiting Phenomena" class established

- 1. Using TCERT No-Nos re-identified in Q1-Q16 search
- 2. Augmented with random 200 "unknown" TCEs subjected to mini-triage

Results:

- 1. High recovery rates for PCs can be achieved (~96%)
- 2. AFPs not well defined by training set, given large dispersion
- 3. NTPs not fully defined by training set

Initial Training Results

New Training Regimen

"Planet Candidate" Class Retained

"Astrophysical False Positive" Class Strengthened

- 1. Shorter/Longer Period Test cut at 0.5
- 2. TCEs with huge radii (>25 Re) set as AFPs

"Non-Transiting Phenomena Class Strengthened

- 1. Bootstrap FAR cut at 1x10⁻¹¹ (conservative)
- 2. Ratio of robust detection statistic/detection SNR to maxMES cut at 0.5

New Diagnostics added:

- 1. Combination of shorter/longer period tests
- 2. Ratios of robust detection stat/detection SNR to maxMES
- 3. Maximum correlation to any other TCE

Some Caveats: Kepler-90

Only confirmed planet system failing the bootstrap

Strong TTVs may fool the bootstrap (and weak secondary test)

Three Class Vetting: Latest Training Results

Three Class Vetting: Latest Training Results

New Class Conditional Densities Kepler

Planets

PC Posterior Probabilities

AFP Posterior Probabilities

NTP Posterior Probabilities

Bayes MAP Classifications

New Likely Planet Candidates

- Vetting planet candidates is tough for Kepler and probably will tougher for TESS and PLATO
- Machine learning promises to significantly reduce the amount of time humans need to spend on "duds
- Strong training sets and key diagnostics are important for supervised learning systems
- Random forests can ascribe posterior probabilities to planet candidates identified by transit searches – can be used in occurrence rate calculations
- Transit injection can be used to train the autovetter