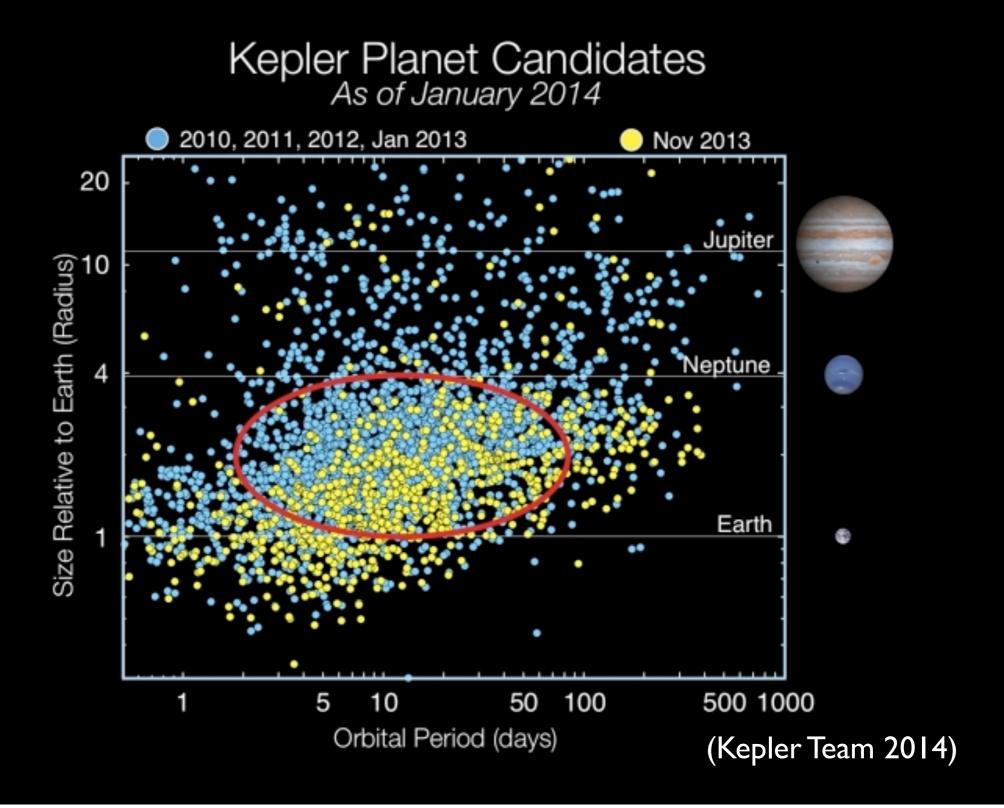
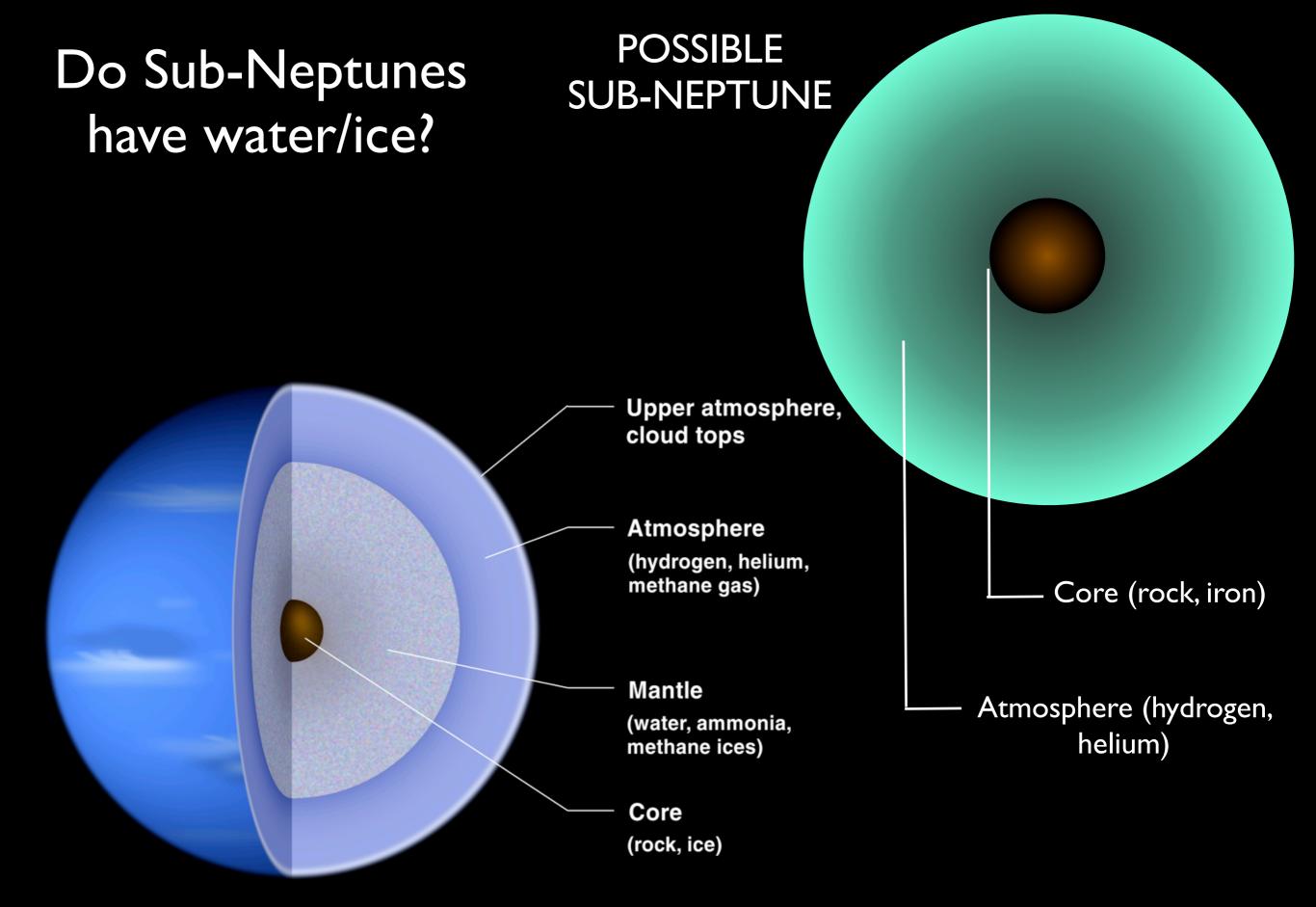

The Mass-Radius Relation for 65 Exoplanets Smaller than Neptune

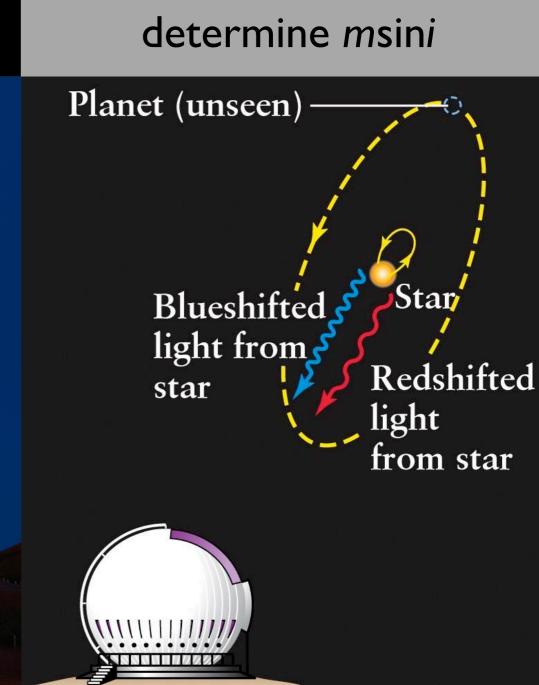



Lauren M. Weiss

NSF Graduate Research Fellow

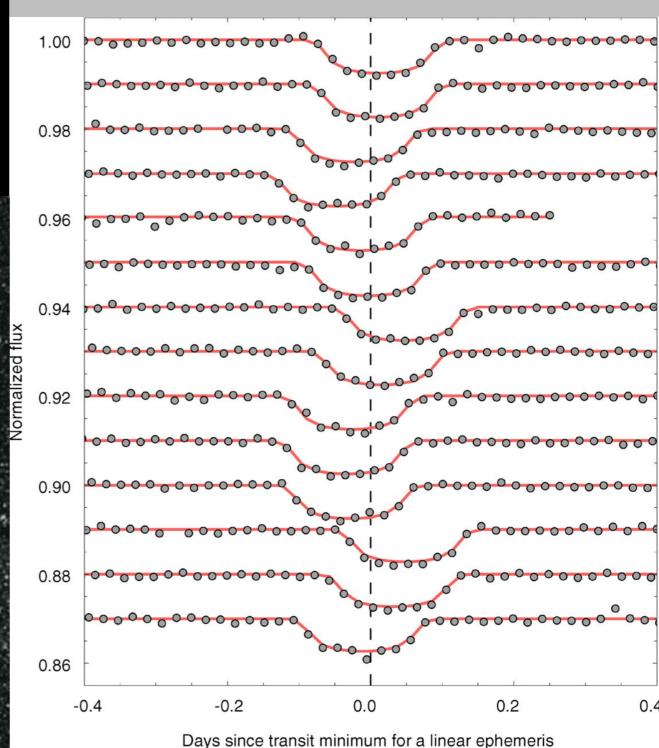
UC Berkeley

Sub-Neptunes are common...what are they made of?

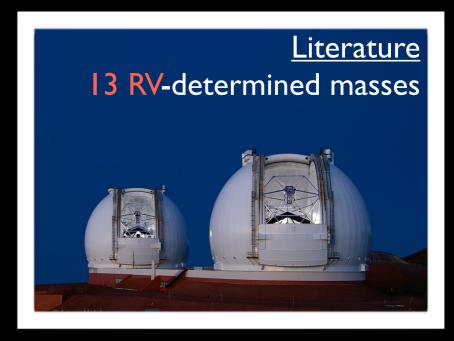


NEPTUNE / POSSIBLE SUB-NEPTUNE

Measure stellar radial velocity

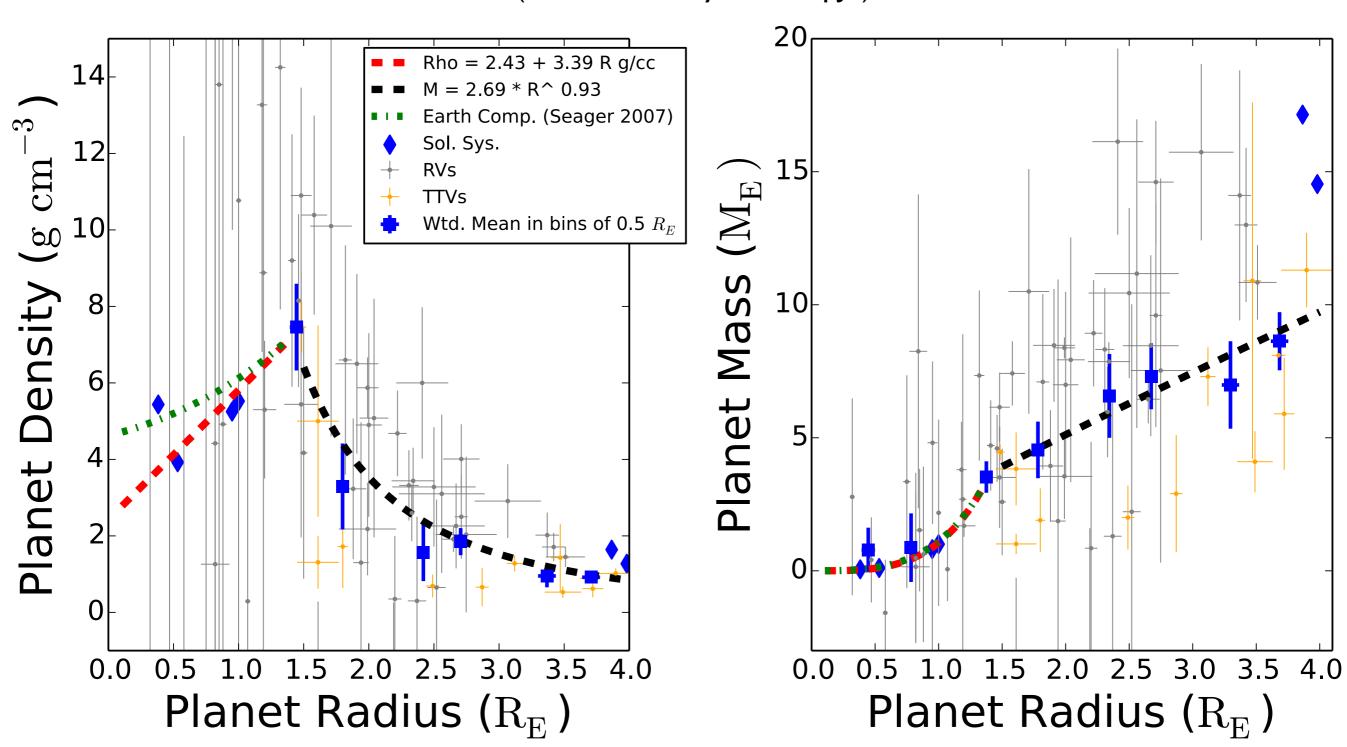


Measure transits, transit timing variations


determine Rp/Rs, m x e

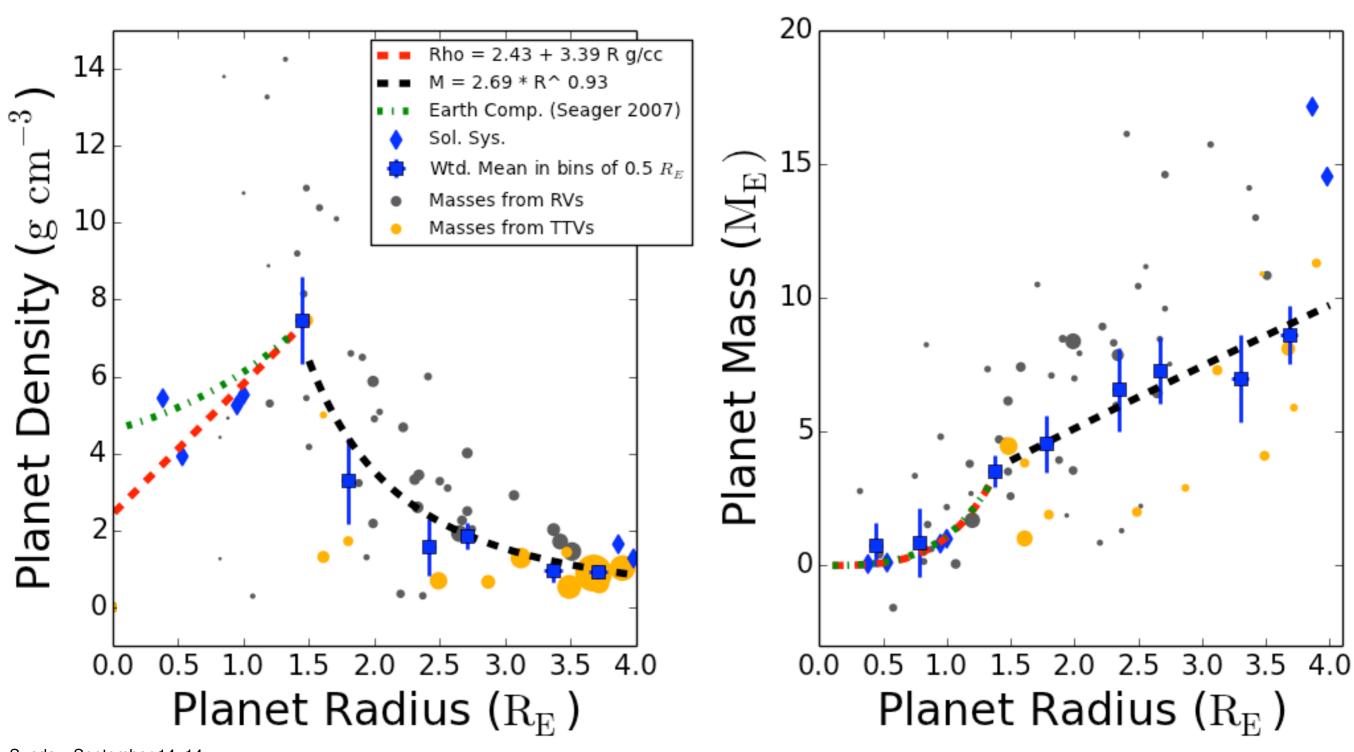
Mass determinations and upper limits of 65 exoplanets smaller than 4 Earth radii from RVs, TTVs

65 Masses of Exoplanets Smaller than 4 Earth radii (40 from Marcy+ 2014)


Table 1 Exoplanets with Masses or Mass Upper Limits and $R_{\rm P} < 4R_{\oplus}$									
Name	Per (d)	$_{(M_{\oplus})}^{ m Mass}$	$ m_{Radius} \ (R_{\oplus})$	$\operatorname{Flux}^a (F_\oplus)$	First Ref.	Mass, Radius Ref.			
^b 55 Cnc e	0.737	8.38 ± 0.39	1.990 ± 0.084	2400	McArthur et al. (2004)	Endl et al. (2012), Dragomir et al. (2013a)			
CoRoT-7 b	0.854	$7.42{\pm}1.21$	1.58 ± 0.1	1800	Queloz et al. (2009), Léger et al. (2009)	Hatzes et al. (2011)			
GJ 1214 b	1.580	6.45 ± 0.91	2.65 ± 0.09	17	Charbonneau et al. (2009)	Carter et al. (2011)			
HD 97658 b	9.491	7.87 ± 0.73	2.34 ± 0.16	48	Howard et al. (2011)	Dragomir et al. (2013b)			
Kepler-10 b	0.837	4.60 ± 1.26	1.46 ± 0.02	3700	Batalha et al. (2011)	Batalha et al. (2011)			
^c Kepler-11 b	10.304	1.90 ± 1.20	1.80 ± 0.04	130	Lissauer et al. (2011)	Lissauer et al. (2013)			
^c Kepler-11 c	13.024	2.90 ± 2.20	2.87 ± 0.06	91	Lissauer et al. (2011)	Lissauer et al. (2013)			
^c Kepler-11 d	22.684	7.30 ± 1.10	3.12 ± 0.07	44	Lissauer et al. (2011)	Lissauer et al. (2013)			
^c Kepler-11 f	46.689	2.00 ± 0.80	2.49 ± 0.06	17	Lissauer et al. (2011)	Lissauer et al. (2013)			
Kepler-18 b	3.505	6.90 ± 3.48	2.00 ± 0.10	460	Borucki et al. (2011)	Cochran et al. (2011)			
Kepler-20 b	3.696	$8.47{\pm}2.12$	1.91 ± 0.16	350	Borucki et al. (2011)	Gautier et al. (2012)			
Kepler-20 c	10.854	15.73 ± 3.31	$3.07{\pm}0.25$	82	Borucki et al. (2011)	Gautier et al. (2012)			
Kepler-20 d	77.612	7.53 ± 7.22	2.75 ± 0.23	6.0	Borucki et al. (2011)	Gautier et al. (2012)			
^c Kepler-30 b	29.334	11.3 ± 1.4	3.90 ± 0.20	21	Borucki et al. (2011)	Sanchis-Ojeda et al. (2012)			
^c Kepler-36 b	13.840	4.46 ± 0.30	1.48 ± 0.03	220	Borucki et al. (2011)	Carter et al. (2012)			
^c Kepler-36 c	16.239	8.10 ± 0.53	3.68 ± 0.05	180	Carter et al. (2012)	Carter et al. (2012)			
Kepler-68 b	5.399	8.30 ± 2.30	2.31 ± 0.03	410	Borucki et al. (2011)	Gilliland et al. (2013)			
Kepler-68 c	9.605	4.38 ± 2.80	0.95 ± 0.04	190	Batalha et al. (2013)	Gilliland et al. (2013)			
Kepler-78 b	0.354	1.69 ± 0.41	1.20 ± 0.09	3100	Sanchis-Ojeda et al. (2013)	Howard et al. (2013)			
Kepler-100 c	12.816	0.85 ± 4.00	2.20 ± 0.05	210	Borucki et al. (2011)	Marcy et al. (2014)			
Kepler-100 b	6.887	7.34 ± 3.20	1.32 ± 0.04	470	Borucki et al. (2011)	Marcy et al. (2014)			
Kepler-100 d	35.333	-4.36 ± 4.10	1.61 ± 0.05	56	Borucki et al. (2011)	Marcy et al. (2014)			
Kepler-93 b	4.727	2.59 ± 2.00	1.50 ± 0.03	220	Borucki et al. (2011)	Marcy et al. (2014)			
Kepler-102 e	16.146	8.93 ± 2.00	2.22 ± 0.07	17	Borucki et al. (2011)	Marcy et al. (2014)			
Kepler-102 d	10.312	3.80 ± 1.80	1.18 ± 0.04	31	Borucki et al. (2011)	Marcy et al. (2014)			
Kepler-102 f	27.454	0.62 ± 3.30	0.88 ± 0.03	8.3	Borucki et al. (2011)	Marcy et al. (2014)			
Kepler-102 c	7.071	-1.58 ± 2.00	0.58 ± 0.02	51	Borucki et al. (2011)	Marcy et al. (2014)			
Kepler-102 b	5.287	0.41 ± 1.60	0.47 ± 0.02	78 210	Borucki et al. (2011)	Marcy et al. (2014)			
Kepler-94 b	2.508	10.84±1.40	3.51 ± 0.15	210	Borucki et al. (2011)	Marcy et al. (2014)			

65 Masses of Exoplanets Smaller than 4 Earth radii (40 from Marcy+ 2014)

Kepler-103 b	15.965	14.11±4.70	3.37±0.09	120	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-105 b Kepler-106 c	13.571	10.44 ± 3.20	2.50 ± 0.09	84	Borucki et al. (2011)	Marcy et al. (2014) Marcy et al. (2014)
Kepler-106 c Kepler-106 e	43.844	11.17 ± 5.80	2.56 ± 0.32 2.56 ± 0.33	16	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-106 b	6.165	0.15 ± 2.80	0.82 ± 0.11	240	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-106 d	23.980	-6.39 ± 7.00	0.95 ± 0.11	43	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-100 d Kepler-95 b	11.523	13.00 ± 2.90	3.42 ± 0.09	180	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-109 b	6.482	1.30 ± 5.40	2.37 ± 0.07	440	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-109 c	21.223	2.22 ± 7.80	2.52 ± 0.07	95	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-48 b	4.778	3.94 ± 2.10	1.88 ± 0.10	170	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-48 c	9.674	14.61 ± 2.30	2.71 ± 0.14	230	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-48 d	42.896	7.93 ± 4.60	2.04 ± 0.14	14	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-79 b	13.4845	10.9 ± 6.70	3.47 ± 0.07	160	Borucki et al. (2011)	Jontof-Hutter et al. (2013)
Kepler-79 c	27.4029	5.9 ± 2.10	3.72 ± 0.07	63	Borucki et al. (2011)	Jontof-Hutter et al. (2013)
Kepler-79 e	81.0659	4.1 ± 1.15	3.49 ± 0.14	15	Borucki et al. (2011)	Jontof-Hutter et al. (2013)
Kepler-113 c	8.925	-4.60 ± 6.20	2.19 ± 0.06	51	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-113 b	4.754	7.10 ± 3.30	1.82 ± 0.05	64	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-25 b	6.239	9.60 ± 4.20	2.71 ± 0.05	670	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-37 d	39.792	1.87 ± 9.08	1.94 ± 0.06	7.7	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-37 c	21.302	3.35 ± 4.00	0.75 ± 0.03	16	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-37 b	13.367	2.78 ± 3.70	0.32 ± 0.02	37	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-68 b	5.399	5.97 ± 1.70	2.33 ± 0.02	380	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-68 c	9.605	2.18 ± 3.50	1.00 ± 0.02	220	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-96 b	16.238	8.46 ± 3.40	2.67 ± 0.22	74	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-131 b	16.092	16.13 ± 3.50	2.41 ± 0.20	72	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-131 c	25.517	$8.25{\pm}5.90$	0.84 ± 0.07	29	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-97 b	2.587	3.51 ± 1.90	1.48 ± 0.13	850	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-98 b	1.542	$3.55{\pm}1.60$	1.99 ± 0.22	1600	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-99 b	4.604	$6.15{\pm}1.30$	1.48 ± 0.08	90	Borucki et al. (2011)	Marcy et al. (2014)
d Kepler-406 b	2.426	4.71 ± 1.70	1.43 ± 0.03	710	Borucki et al. (2011)	Marcy et al. (2014)
^d Kepler-406 c	4.623	1.53 ± 2.30	0.85 ± 0.03	290	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-407 b	0.669	0.06 ± 1.20	1.07 ± 0.02	3600	Borucki et al. (2011)	Marcy et al. (2014)
Kepler-409 b	68.958	2.69 ± 6.20	1.19 ± 0.03	6.2	Borucki et al. (2011)	Marcy et al. (2014)
KOI-94 b	3.743	10.50 ± 4.60	1.71 ± 0.16	1200	Batalha et al. (2013)	Weiss et al. (2013)
KOI-1612.01	2.465	0.48 ± 3.20	0.82 ± 0.03	1700	Borucki et al. (2011)	Marcy et al. (2014)
KOI-314 b	13.78164	3.83 ± 1.37	1.61 ± 0.16	4.60	Borucki et al. (2011)	Kipping et al. (2014)
KOI-314 c	23.08933	1.01 ± 0.38	1.61 ± 0.16	2.30	Borucki et al. (2011)	Kipping et al. (2014)
					• • •	, ,


The Mass-Radius Relation for 65 Exoplanets Smaller than Neptune

(Weiss & Marcy 2014, ApJL)

The Mass-Radius Relation for 65 Exoplanets Smaller than Neptune

(Weiss & Marcy 2014, ApJL)

