Models of Planet Formation

Paul Mollière & Christoph Mordasini Y. Alibert, W. Benz, K.-M. Dittkrist, S. Jin, R. v. Boekel Towards other Earths II — The Star-Planet Connection Porto, 18 September 2014

From the Solar System with circular orbits...

Terrestrial

Gas Giants

Ice Giants

...to the diverse population of exoplanets.

Planetesimal Formation

Dust and ices in disk condense, coagulate, settle

Formation of Protoplanetary Embryos

$$\frac{dm_p}{dt} = \frac{\sqrt{3}}{2} \Sigma_s \Omega \pi r^2 \left(1 + \frac{v_{esc}^2}{v_{\infty}^2} \right)$$

Feeding zone ~ $\pm 3.5 \text{ R}_{\text{Hill}} \propto M^{1/3}$ Assuming circular orbits!

5 x MMSN This is not the enly polution $p = \frac{v}{2} = \frac{1}{2}$ Isolation mass, WHEN: a 1 ALL 5 2 ALL va12 M Μ 0.9 M Further growth by migration, more massive disk, ...?

Growth regimes

• M < 30 M_® or R < 4 R_® with P < 50 d planets occurrence fHARPS = 40 % fKepler = 30 % Often multiple systems! Up to 70 % in HARPS!

Formation of close-in dynamically packed systems?

Ida et al. (2013)

- Mutual capture in MMR & migration
 - Disk dispersal: Orderly growth

Chiang & Laughlin (2013), Hansen & Murray (2013)

In-situ formation? MMEN ~ 7-8 × MMSN

Hands et al. (2014)

Inward migration of final system?

Distinguish using spectra, M-R relation?

Giant Formation: Gravitational Instability

Planet formation by partial collapse of self-gravitating disk:

$$Q = \frac{2C_{s}\Omega_{K}}{\pi G\Sigma} \leq 1.5 \qquad \& \qquad \left(\frac{T_{cool}}{T_{orb}} \leq 1\right) , \text{ but:} \quad C_{s} \rightarrow Q \ C_{s} \rightarrow T_{cool} \ Toomre (1964) \qquad Gammie (2001): Collapse on timescale \Omega^{-1}. \qquad C_{s} \rightarrow T_{cool} \ C_{s} \rightarrow T$$

- Unlikely inside 40 AU!
 From analytical arguments.
- Needs massive disk! Early, during disk formation?
- No consensus so far! Boss et al., Mayer et al., Nelson et al., Boley et al. Cai et al., Stamatellos & Whitworth, ...
- Possibly at r > 100 AU!
 Boley (2009)

Giant Formation: Core Accretion E.g. Pollack et al. (1996)

"Core-assisted gas capture instability" another possible method? \rightarrow Sergei Nayakshin's talk!

Migration Important right from the start: 51 Peg b !

• From simple model (impulse approximation)

Lin & Papaloizou (1986)

- High M_{pl}: Type-II: Gap opens!

R_{Hill} > H т_{gap} < т_{visc}

Co-rotating frame

Other processes for close in planets are possible: Planet-planet interaction, Kozai migration!

Theory – Observation: Comparison

- ✓) Giant planet frequency [Fe/H]_{star}
- Giant planet frequency semi major axis
 - Giant planet mass distribution
 - ? Formation of close-in packed systems
 - ? Origin of planetary atmospheres From nebula? From collisions? Outgassing? Evaporation?

? Large eccentricities of planetary systems

Santos et al. (2004), Fischer & Valenti (2005), Udry & Santos (2007), Marcy et al. (2005), Mayor et al. (2011), Ida et al. (2013), Chiang & Laughlin (2013), Hansen & Murray (2013) ,Hands et al. (2014), Fabrycky & Tremaine (2007), Adibekyan et al. (2013), Mordasini et al., Alibert et al., Schlaufmann (2014), Dawson & Murray-Clay (2013)

Planetary Spectra from Formation?

• Planet formation models encompass many processes

Collapse • Formation of the disk • Disk chemistry • Disk evolution • Planetesimal formation • Grain & planetesimal drift & migration • Planetesimal dynamics • Dynamical coupling of EGP and planetesimals • Planet formation mode • Planetary migration • Evaporation • Planetary structure evolution • Planetary atmospheres, atmospheric dynamics • ...

Many individual processes and their coupling have to be understood better and in a qualitative & quantitative way!