Do planets have more time to grow than we thought?

SUSANNE PFALZNER

MANUEL STEINHAUSEN, KIRSTEN VINCKE, KARL MENTEN

Max-Planck-Institut für Radioastronomie Minerva Group "Star and Planet Formation in Massive Clusters"

"Towards other Earth", Porto

Determination of disc dispersal time

- Use cluster as many stars of similar age located in small area
- 2. Look for **disc indicators** (infrared excess, accretion signature)
- 3. Determine **relative number** of stars with disc
- 4. Repeat for cluster of **different age**

Development of stellar properties

Disc fraction vs. cluster age

Standard interpretation:

Most disc dissipate within 2-3 Myr

Planets form very fast

< 5Myr

Towards other Earth", Porto

Older clusters all much

Inhomogenous sample

more massive

more extended

"Towards other Earth", Porto

Older clusters all much

more massive

more extended

Towards other Earth", Porto

18.09.2014

Why?

Models of massive cluster formation

- **Distribution of subclusters that merge** Increasing size with age not straightforward
- Formation as single massive entity
 Gas expulsion: explanation for cluster growth

Result of gas expulsion depends on

Highly deterministic

Star formation efficiency

Tutukov 1978, Hills 1980, Mathieu 1980, Adams 2000,Geyer & Burkert 2001, Kroupa et al. 2001, Boily &Kroupa 2003, Bastian & Goodwin 2006, Converse & Stahler 2011 ... many more

- Duration of gas expulsion phase (rapid vs. slow) Lada et al. 1984
- **Virial state before expulsion** Aarseth 1972,...Allison & Goodwin 2011
- Spatial distribution before expulsion (clumping, central concentration) Fellhauer & Kroupa 2005
- Strength of tidal field Goodwin 1997, Baumgardt & Kroupa 2007

"Towards other Earth", Porto

Associations/Extended clusters

Sequence corresponds to **30% SFE**

Corresponds to maximum observed SFE in solar neighbourhood

'Towards other Earth", Porto

Consequences of 30% SFE

Remnant cluster contains

- 10% of initial cluster stars
- spread out FOV of ~50x50pc at 10 Myr

- Lower mass clusters fall below detection limit
- We look at small fraction of cluster stars

Development of stellar properties

Disc fraction vs. cluster age

Disc lifetime of stars:

of massive cluster that remain bound

Representative for the field population ?

'Towards other Earth", Porto

Disc destruction processes

internal processes

Weidenschilling 1997, Hueso & Guillot 2005,Williams & Cieza 2011, Wolf et al. 2012

- dust growth
- viscous spreading
- internal photo evaporation

external processes

- external photo-evaporation
 by the massive stars
 Richling & Yorke 1998, Alexander 2008,
 Anderson et al. 2013
- tidal stripping gravitational interactions with other cluster members

Heller 1995, Pfalzner et al. 2006, Olczak et al. 2010

External disc destruction processes

Observations: Gutermuth et al. 2009) important when volume density exceeds 10⁴ stars/pc³.

external processes

- external photo-evaporation
 by the massive stars
 Richling & Yorke 1998, Alexander 2008,
 Anderson et al. 2013
- tidal stripping gravitational interactions with other cluster members

Heller 1995, Pfalzner et al. 2006, Olczak et al. 2010

Only in inner 0.2-0.4 pc

"Towards other Earth", Porto

Three selection effects for disc lifetimes

Disc fraction vs. cluster age

Disc lifetime of stars:

in the centre of of massive cluster that remain bound

No info for stars that

- reside not at centre
- become unbound
- in low-mass clusters

Disc lifetime of field population?

Fraction of long-lived discs up to 30-60%

Disc fraction in sparse co-moving groups higher

Towards other Earth", Porto

Summary

Disc fraction determination possibly biased towards

- 1. Massive clusters
- 2. Bound fraction (central 10%)
- 3. Expanding highest density areas

Probably not representative for field population

Consequence:

- Disc life time uncertain
- **30-60% of stars could have long-lived discs**