Hot Jupiters and their Exoplanet hosts – an X-ray Perspective

With Ignazio Pillitteri (INAF- O.A.Pa.)
Katja Poppenhaeger (CfA)
H. Moritz Günther (CfA)

What is Star Planet Interaction?

Why do you care about X-rays?

- X-rays from stars affect exoplanets...
 - Some hot Jupiters appear inflated beyond what the bolometric luminosity would predict.
 - ♦ X-Ray/UV flux → atmospheric expansion (Lammier et al. 2003).
 - ♦ X-Ray flux → photochemistry changing the thermal budget (Laing et al. 2004; Burrows et al. 2008).
 - Coronal radiation produces rapid photoevaporation of the atmospheres of planets close to young late-type stars (Sanz-Forcada et al. 2011).
- ...Exoplanets may affect their host stars.
 - \diamond Analytic Studies show \rightarrow $F_{recon} \alpha a_p^{-3}$ (Saar et al. 2004)
 - ♦ Analytic models indicate field lines can connect the star to the planet, ruptures of the lines could give rise to flare-like activity (Lanza 2008).
 - ♦ MHD simulations show strong feedback visible in X-rays (Cohen et al. 2011).
 - ♦ Tidal forces can work in two directions

Takeaways

(in order of confidence)

- 1. We have seen a planetary transit in X-rays and the planet is much "bigger" in X-rays than in any other wavelength.
- 2. Hot Jupiters can spin-up stars with large convective zones through tidal effects.
- 3. Planets can induce active spots on the stellar surface through magnetic effects.
- 4. Activity can include system scale stellar flares. (time permitting)

HD 189733 – Active spots?

2011

Plausibility Argument: **Accreting Streams and Tails**

High UV,

 \bigoplus

Activity decline with stellar age

Data from Preibisch et al. 2005, Jeffries et al. 2006, Schmitt et al. 1995, Schmitt 1997, Maggio et al. 1987, Hawley et al. 1994

Tidal Evolution can effect gyrochronolgy – RS CVns

Planet Hosting Stars With Stellar Companions

Age/activity in the weak tidal interaction case

Age/activity in the strong tidal interaction case

Age/activity in the strong tidal interaction case

X-ray Activity for 8 Systems

WASP-18

Single F6 star: P~22.6 hours M_{pl}~10.4M_{jup}

WASP-18 vs. other F stars

 L_x WASP-18 < $10^{26.5}$ erg/s L_x Tau Boo ~ 10^{28} erg/s L_x Procyon ~ 10^{28} erg/s

WASP 18 is YOUNG ~0.6Gyr

Pillitteri et al. (2014) See also Fossati et al. (2014)

Star	T_{eff}	R_{star}	\mathbf{M}_{star}	M_{planet}	Separation	$\log R'_{HK}$	H_P	H_t	H_t/H_P
	K	$ m R_{\odot}$	${ m M}_{\odot}$	\mathbf{M}_{Jup}	AU		km	km	
WASP-18	6400	1.29	1.28	10.43	0.02047	-5.43 ₺	419	498.3	1.189
WASP-12	6300	1.599	1.35	1.404	0.02293	-5.5	600.1	122.3	0.204
WASP-14	6475	1.306	1.211	7.341	0.036	-4.923	458.7	44	0.096
XO-3	6429	1.377	1.213	11.79	0.0454	-4.595	505.5	39.4	0.078
HAT-P-7	6350	1.84	1.47	1.8	0.0379	-5.018	735.5	37.2	0.051
HAT-P-2	6290	1.64	1.36	8.74	0.0674	-4.78	625.6	14.6	0.023
Kepler-5	6297	1.793	1.374	2.114	0.05064	-5.037	740.9	14.1	0.019
HAT-P-14	6600	1.468	1.386	2.2	0.0594	-4.855	516	3.4	0.007
HAT-P-6	6570	1.46	1.29	1.057	0.05235	-4.799	545.9	2.6	0.005
Kepler-8	6213	1.486	1.213	0.603	0.0483	-5.05	568.8	2.3	0.004
WÂSP-17	6650	1.38	1.2	0.486	0.0515	-5.331	530.7	1.1	0.002
HAT-P-9	6350	1.32	1.28	0.67	0.053	-5.092	434.7	1	0.002
WASP-19	5500	1.004	0.904	1.114	0.01616	-4.66	308.5	55.2	0.179

outflowing atmosphere 20000 K 3000 K R_X R_{opt} X-ray absorption

Planetary Atmosphere: Toy Model

 $H=kT/\mu_mg$

 $\Delta D \sim HR_{Pl}/R_*$

Miller-Ricci & Fortney (2010)

To be X_ray opaque density at 1.75R_{PI}: 10¹¹ cm⁻³

high-altitude temperature: ~ 20,000K

Poppenhaeger, Schmitt & Wolk (2013)

を A R C U S

- ARCUS IS a SMEX proposal for a 100-1500eV dispersive spectrograph.
- 20 transit observation of 30 ks each are required for this S/N, assuming that the optical transit lasts 10 ks. Typical transit durations for Hot Jupiters range from 5 ks to 20 ks
- Model assuming an X-ray flux of 10^{-12} erg s⁻¹ cm⁻², an optical exoplanetary transit depth of 3% and a maximum extent of the outer atmosphere of twice the optical radius
- ➤ We expect TESS to provide at least 5 such targets.

energy (keV)

K. Poppenhaeger

X-Rays and exoplanets: Status 2014

- Extended planetary atmospheres can lead to deep X-ray transits.
 - These can be used along with UV and optical data to model atmospheres.
- When a hot Jupiter and its host's convective zone have strong tidal coupling, stellar secondaries appear too faint.
 - ♦ Hot Jupiter's keep their host planets looking young.
 - Corollary: You cannot use activity to date stars with close in planets.
- On all three occasions an X-ray flare was observed between phases 0.50-0.65. (& 2 UV flares in the same range)
 - ♦ But how does the flare "know" where the Earth is?
 - ♦ MHD models predict a foot point 70-90° forward of the subplanetary point.
- We were able to measure the loop length of one flare.
 - ♦ It is a large fraction of the star-planet distance

HD 189733

	HD 189733A	HD 189733b	HD 189733B
Type	K 1.5V	planet	M4V
Mass	$0.81M_{\odot}$	$1.15M_{jup}$	$0.2 M_{\odot}$
Radius	$0.76R_{\odot}$	$1.26R_{jup}$	_
Orbital Period	_	2.219d	3200yr
Mean orbital radius	_	$0.003~\mathrm{AU}$	216 AU

Phased Time Variability?

2011

2D wavelet analysis of 2012 light curve

Description: A damped magneto acoustic oscillation in the flaring loop.

 $\Delta I/I \sim 4 \Box nk_BT/B^2$

T~ 12 MK n: density= $5x10^{10}$ cm⁻³ (from RGS data)

B ----> 40-100 G

[see Mitra-Kraev et al. (2005)]

2D wavelet analysis of 2012 light curve

Description: If a single loop it travels a fair fraction of the distance to the planet.

assuming N=1

Plausibility Argument: Accreting Streams and Tails

⊕ High UV, ~ M_{jup}

What is the evidence exists for Star-Planet Interaction?

- Direct observation of phased emission from Ca II HK lines (Shkolnik et al. 2003, 2008)
- Stars with hot Jupiters are brighter in X-rays (Kashyap et al. 2009)
- But both results are disputed. (Poppenhager et al. 2010, 2011)

