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What is Star Planet
Interaction?

Rotational
Synchronization

Tidal
Interaction

Magnetic
Interaction

Change Dynamo (X Cuntz et al. 2000
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Why do you care about X-rays

X-rays from stars affect exoplanets...

Some hot Jupiters appear inflated beyond what the bolometric
luminosity would predict.

X-Ray/UV flux = atmospheric expansion (Lammier et al. 2003).

X-Ray flux = photochemistry changing the thermal budget
(Laing et al. 2004; Burrows et al. 2008).

Coronal radiation produces rapid photoevaporation of the atmospheres
of planets close to young late-type stars (sanz-Forcada et al. 2011).

...Exoplanets may affect their host stars.
Analytic Studies show = F ., o @, (saar et al. 2004)

Analytic models indicate field lines can connect the star to the planet,
ruptures of the lines could give rise to flare-like activity (Lanza 2008).

MHD simulations show strong feedback visible in X-rays (cohen et al. 2011).
Tidal forces can work in two directions
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(in order of confidence)
. We have seen a planetary transit in X-rays and

the planet is much “bigger” in X-rays than in
any other wavelength.

. Hot Jupiters can spin-up stars with large
convective zones through tidal effects.

. Planets can induce active spots on the stellar
surface through magnetic effects.

. Activity can include system scale stellar flares.
(time permitting)




HD 189733 — Active spots?
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Polar view
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[see Pillitteri -poster]
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see Matsakos et al. (2014)




n [cmA-3]
1 3E+07
6.9E+06
3.8E+06
2.1E+0b
1 1E+06
B.1E+0b
3.4E+0b
1 .8E+05
1 .0E+05

Cohen et al. (2011)
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Activity decline with stellar age
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Data from Preibisch et al. 2005, Jeffries et al. 2006, Schmitt et al. 1995,
Schmitt 1997, Maggio et al. 1987, Hawley et al. 1994




Tidal Evolution can effect
gyrochronolgy — RS CVns




Planet Hosting Stars With
Stellar Companions

strong tidal interaction

CoRoT-2 O
D 189733 O

weak tidal interaction

tau Boo




Age/activity in the weak tidal
Interaction case
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Poppenhaeger & Wolk (2014)



Age/activity in the strong tidal
Interaction case

¢ G/F stars
A Kstars
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Age/activity in the strong tidal
Interaction case
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Poppenhaeger & Wolk (2014)



Strong Tidal Interactions

O CoRoT-2
o HD 189733

Weak Tidal Interactions

' HD 109749

O HD 46375

" HD 178911
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Single F6 star: WASP 18 is YOUNG ~0.6Gyr
P~22.6 hours

WASP-18 vs. other F stars

L, WASP-18 < 10%%> erg/s
L, Tau Boo ~ 1028 erg/s
L, Procyon ~ 1028 erg/s

Pillitteri et al. (2014) See also Fossati et al. (2014)
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AU
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[see Pillitteri -poster]

Pillitteri et al. (2014)
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optical data
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optical data
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orbital phase

SDO/AL 193 20011 -10-18 Q0:42:32 UT
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optical data

X-ray data
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optical data
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X-ray transit model

0.98 1.00 1.02
orbital phase

SDO/AL 193 20011 -10-18 Q0:42:32 UT




X-ray data
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Poppenhaeger, Schmidt & Wolk (2013)




outflowing atmosphere

20000 K
3000 K

AD~ HRp/R.
Miller-Ricci & Fortney (2010)

To be X _ray opaque
density at 1.75Rp: 10! cm3

high-altitude temperature:
~X-ray absorption ~ 20,000K

Poppenhaeger, Schmitt & Wolk (2013)
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100-1500eV dispersive
spectrograph.

» 20 transit observation of 30 ks each
are required for this S/N, assuming
that the optical transit lasts 10 ks.
Typical transit durations for Hot
Jupiters range from 5 ks to 20 ks

Model assuming an X-ray flux of
10-12erg s—1 cm—2, an optical
exoplanetary transit depth of 3%
and a maximum extent of the outer
atmosphere of twice the optical
radius

» We expect TESS to provide at least 5 energy (keV)
such targets.

K. Poppenhaeger




X-Rays and exoplanets:
Status 2014

Extended planetary atmospheres can lead to deep X-ray transits.
<> These can be used along with UV and optical data to model
atmospheres.
When a hot Jupiter and its host’s convective zone have strong tidal
coupling, stellar secondaries appear too faint.
< Hot Jupiter’s keep their host planets looking young.
< Corollary: You cannot use activity to date stars with close in
planets.

On ali three occasions an X-ray flare was observed between
phases 0.50-0.65. (& 2 UV flares in the same range)
< But how does the flare “know” where the Earth is?
< MHD models predict a foot point 70-90° forward of the sub-
planetary point.
We were able to measure the loop length of one flare.
< It is a large fraction of the star-planet distance







Mass

Radius

Orbital Period
Mean orbital radius

HD 189733A

0.81M,
[_} . T {_j R ._.

HD 189733b
planet
1.15M
1.26 R,
2.219d
0.003 AU

HD 1897338

0.2M
3200yr
216 AU




Phased Time Variability?
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orbital plane edge—on
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see Matsakos et al. (2014)




What is the evidence exists for
Star-Planet Interaction?

e Direct observation of
phased emission from

Ca Il HK lines (shkolnik et al.
2003, 2008)

Stars with hot Jupiters

are brighter in X-rays
(Kashyap et al. 2009)

But both results are

disputed. (Poppenhager et al.
2010, 2011)

KAYSHAP ET AL. 2009




