"What asteroseismology can do for exoplanets" The case of the bright multiple system Kepler-410

Vincent Van Eylen Stellar Astrophysics Centre, Aarhus University

Advisors: Simon Albrecht and Hans Kjeldsen

M. N. Lund, V. Silva Aguirre, T. Arentoft, W. J. Chaplin, H. Isaacson, M. G. Pedersen, J. Jessen-Hansen, B. Tingley, J. Christensen-Dalsgaard, C. Aerts, T. L. Campante and S. T. Bryson

What can asteroseismology do?

- Characterisation of the planet through characterisation of the host star
- **Obliquity** through determination of the stellar inclination
- Eccentricity of (small) planets from photometry alone using accurate stellar densities

KOI-42b (Kepler-410A b)

Van Eylen et al. 2014, ApJ

Excellent candidate:

• 4 years of Kepler short-cadence observations

KOI-42b (Kepler-410A b)

Van Eylen et al. 2014, ApJ

Excellent candidate:

 4 years of Kepler short-cadence observations

Small planet candidate (2.8 R_{\oplus}) in a 17 day period \Rightarrow RV amplitude \propto 1 m/s: outside of range!

KOI-42b (Kepler-410A b)

Adapted from Dragomir et al. 2013

Transit timing variations

Planetary validation

Planetary validation

A.O.: Adams et al. 2012, Speckle: Howell et al. 2011

A.O.: Adams et al. 2012, Speckle: Howell et al. 2011

KOI-42A b or KOI-42B b?

KOI-42A b or KOI-42B b?

Planetary transit (Spitzer 4.5 μ m)

Van Eylen et al. 2014 Spitzer heritage archive P.I.: David Charbonneau

See also, e.g.: Fressin et al. 2011 (Kepler-10c) Ballard et al. 2014 (Kepler-93b)

Kepler-410A b Elio Di Rupo @eliodirupo Op #WEF14 met de Koning om #België te promoten - Au #WEF14 avec le Roi pour promouvoir la #Belgique 16 premier.be pic.twitter.com/anGSvtIPUB g+ google.com/+eliodirupo fb.com/eliodirupo instagr.am/eliodirupo • flic.kr/eliodirupo @ Expand © Vincent Van Eylen with Phoebe2.0 Elio Di Rupo @eliodirupo Congratulations to the Belgian Vincent Van Eylen who has discovered a new extrasolar planet with his team! #Belgiantalent Elio Di Rupo @eliodirupo Mijn felicitaties aan de Belg Vincent Van Eylen die met zijn team een nieuwe extrasolaire planeet heeft ontdekt! #Belgiantalent

Reply 13 Retweet * Favorite *** Mon

Elio Di Rupo @eliodirupo

1h

1. Characterisation of star and planet

Time series \Rightarrow power spectrum of oscillation frequencies

"Echelle diagram": global stellar parameters

 $\mathsf{M_{\star}}=1.1214\pm0.033~\mathsf{M_{\odot}},~\mathsf{R_{\star}}=1.352\pm0.010~\mathsf{R_{\odot}},~\mathsf{age}=2.76\pm0.54~\mathsf{Gyr}$

2. Obliquity through stellar inclination

Courtesy Josh Winn

Hot Jupiters display a wide range of obliquities, e.g.:

Winn et al. 2010 Schlaufman 2010 Hébrard et al. 2011 Albrecht et al. 2012

2. Obliquity through stellar inclination

Courtesy Josh Winn

Hot Jupiters display a wide range of obliquities, e.g.: Winn et al. 2010 Schlaufman 2010 Hébrard et al. 2011 Albrecht et al. 2012

• Planetary migration?

(e.g. Rasio & Ford 1996, Matsumura et al. 2010, Fabrycky & Tremaine 2007)

• Primordial star-disk misalignment?

(e.g. Bate et al. 2010, Thies et al. 2011, Batygin 2012)

2. Obliquity through stellar inclination

Courtesy Josh Winn

Hot Jupiters display a wide range of obliquities, e.g.: Winn et al. 2010 Schlaufman 2010 Hébrard et al. 2011 Albrecht et al. 2012

• Planetary migration?

(e.g. Rasio & Ford 1996, Matsumura et al. 2010, Fabrycky & Tremaine 2007)

• Primordial star-disk misalignment?

(e.g. Bate et al. 2010, Thies et al. 2011, Batygin 2012)

 \Rightarrow Obliquity measurements in multi-planet systems

Rotational Splitting

Oscillation frequencies "split" due to stellar rotation

Courtesy by Andrea Miglio

Rotational splitting: inclination and rotation

Rotational splitting: inclination and rotation

Rotational splitting: inclination and rotation

Inclination and rotation

Van Eylen et al. 2014

Inclination and rotation

Van Eylen et al. 2014

Inclination and rotation

Van Eylen et al. 2014

Obliquity of single systems

Obliquity of multi-planet systems

Values from: Sanchis-Ojeda et al. 2012, Hirano et al. 2012, Albrecht et al. 2013, Chaplin et al. 2013, Huber et al. 2013, Van Eylen et al. 2014, Benomar et al. 2014

Small planets: no RV possible. Eccentricity?

Orbital eccentricity

3. Eccentricity of planets without RV

Small planets: no RV possible. Eccentricity?

(assuming a circular orbit)

Small planets: no RV possible. Eccentricity?

1. ρ_{\star} from transit duration (T) (assuming a circular orbit) • $T \propto R_{\star}/a$: $x = 2R_{+}$ $\Rightarrow T = \frac{PR_{\star}}{\pi r}$ $v = 2\pi a/P$

Small planets: no RV possible. Eccentricity?

1. ρ_{\star} from transit duration (<i>T</i>)			
(assuming a circular orbit)			
• $T \propto R_{\star}/a$:			
$\begin{array}{l} x = 2R_{\star} \\ v = 2\pia/P \end{array}$	$\Rightarrow T = \frac{PR_{\star}}{\pi a}$		
② ${\it R_{\star}}/{\it a} \propto ho_{\star}$ (from Kepler's law):			
P ²	$= \frac{4\pi^2 a^3}{G(M_\star + M_{\rm p})}$		
	\downarrow neglecting $M_{\rm p}$		
M _*	$\approx \frac{4\pi^2 a^3}{GP^2}$		
	\downarrow divide by volume of the star		
ρ_{\star}	$\approx \frac{3\pi}{GP^2} \left(\frac{a}{R_\star}\right)^3$		

Small planets: no RV possible. Eccentricity?

2. ρ_{\star} from asteroseismology

- Directly from large frequency separation: $\Delta \nu \propto \sqrt{
 ho_{\star}}$
- Easiest to determine!

Eccentricity without RV

1. ρ_{\star} from transit duration (*T*) (assuming a circular orbit)

- $T \propto R_{\star}/a$:
- 2 $R_\star/a \propto
 ho_\star$ (from Kepler's law):

2. ρ_{\star} from asteroseismology

- Directly from large frequency separation: $\Delta \nu \propto \sqrt{
 ho_{\star}}$
- Easiest to determine!

Eccentricity without RV

1. ρ_{\star} from transit duration (*T*) (assuming a circular orbit)

- $T \propto R_{\star}/a$:
- 2 $R_\star/a \propto
 ho_\star$ (from Kepler's law):

2. ρ_{\star} from asteroseismology

- Directly from large frequency separation: $\Delta \nu \propto \sqrt{
 ho_{\star}}$
- Easiest to determine!

IF $1 \neq 2$: eccentric orbit

- $\rho_{\star,\mathrm{transit}} \neq \rho_{\star,\mathrm{seismo}} \Rightarrow \mathsf{eccentricity}$
 - $\rho_{\star,\mathrm{transit}}$ also depends on ω
 - complications: false positives, blending, TTVs, ...

See e.g.: Seager and Mallen-Ornélas 2003, Tingley et al. 2011, Dawson and Johnson 2012, Kipping 2014

Eccentricity posterior

Van Eylen et al. 2014

Eccentricity posterior

Van Eylen et al. 2014

Expanding the sample

Eccentricities beyond RV: small planets in multi-planet systems around bright stars

Expanding the sample

Orbital eccentricity

Expanding the sample

Orbital eccentricity

Expanding the sample

Conclusions: what can asteroseismology do?

- Characterisation of the planet through characterisation of the host star
- **Obliquity** through determination of the stellar inclination
- Eccentricity of (small) planets from photometry alone using accurate stellar densities

Also: Kepler-410 is a fascinating system:

- Bright star (V = 9.4), small planet (2.8 $R_\oplus)$
- Multi-planet system: non-transiting planet(s) from TTVs
- Multi-star system: Kepler-410A and Kepler-410B

Conclusions

Extra slides

Conclusions

Parameters

Stellar parameters	Kepler-410A
Mass [M _☉]	1.214 ± 0.033
Radius R_{\star}^{\sim} [R $_{\odot}$]	1.352 ± 0.010
log g [cgs]	4.261 ± 0.007
$\rho \left[g cm^{-3} \right]$	0.693 ± 0.009
Age [Gyr]	2.76 ± 0.54
Luminosity [L _☉]	2.72 ± 0.18
Distance [pc]	132 ± 6.9
Inclination i_{\star} [°]	$82.5^{+7.5}_{-2.5}$
Rotation period*, $P_{ m rot}$ [days]	5.25 ± 0.16
Planetary parameters	Kepler-410A b
Period [days]	17.833648 ± 0.000054
Radius R _m [R _m]	0.000 0.0004
······································	2.838 ± 0.054
Semi-major axis a [AU]	2.838 ± 0.054 0.1226 ± 0.0047
Semi-major axis <i>a</i> [AU] Eccentricity <i>e</i>	$\begin{array}{r} 2.838 \pm 0.054 \\ 0.1226 \pm 0.0047 \\ 0.17^{+0.07}_{-0.06} \end{array}$

Eccentricity vs. angle of periastron ω

