Origin and evolution of stars and planets

Star Formation and Early Evolution

The Team is divided in 3 main lines of research.

Stellar Interiors and Atmospheres

CENTRO DE ASTROFÍSICA DA UNIVERSIDADE DO PORTO Margarida Cunha Team presentation 22 March 2013

www.astro.up.pt

Team

Members

- 23 Researchers
- 10 PhD students
- 7 Graduate (non-PhD) students

Important International collaborations

- ESO- GAIA Survey
- Planet search surveys (RV)
- CoRoT (Asteroseismology)
- Kepler Asteroseismic Science Consortium
- ESO-VISTA, Deep-GLIMPSE and UKIDS surveys
- Participation in planning / development of ground based instrumentation (ESPRESSO; HARPS-N; CODEX)
- Participation in consortia for planned space missions (PLATO; PlanetVision)

Origin and evolution of stars

Stellar Interiors and Atmospheres

Star Formation and Early Evolution

Case study

Formation of massive stars: observations confront theory

Star Formation and Early Evolution

Case study

Formation of massive stars: observations confront theory

 \diamond Massive stars for rapidly in the densest cores and ignite hydrogen even as they are forming.

 \diamond Gravitational and Rayleigh-Taylor Instabilities set in leading to fragmentation and asymmetries in radiation-filled bubbles.

 \diamond Radiation can flow away while filaments of dense fluid continue to fall towards the star.

Krumholz et al., Science, 2009

Star Formation and Early Evolution

Case study

Formation of massive stars: observations confront theory

♦ Fragmentation and possible Rayleigh-Taylor instabilities are discovered with adaptive optics imaging at VLT (ESO).

 \diamond Temperatures of embedded objects (IRSI & IRS2) are high at 40000-50000 K.

 \diamond ALMA is now being used to study disks, kinematics, molecular emission.

Grave et al., submitted; Kumar et al., 2013

Asteroseismology: Probing inside stars through the analysis of stellar oscillations

Asteroseismology:

Probing inside stars through the analysis of stellar oscillations

BiSON solar data – Chaplin et al. 2007

Cunha et al. 2007 with data collected from different authors

Asteroseismology:

Probing inside stars through the analysis of stellar oscillations

 \diamond Modes of different characteristic horizontal scale propagate in different cavities.

♦ Forward approach: universe of models within a given parameter space [e.g., {M, X₀, Y₀, age, etc.}] and with a "given physics" [e.g., κ , eq. of state, nuclear reaction rates, prescription for convection, etc.] => compare with observations

 \diamond Inverse approach: search for frequency combinations that provide localized averages of the structure.

Acoustic ray paths – Cunha et al. 2007

Asteroseismology:

Glitches: characterizing regions of rapid structural variation

1.3 Msun sequence

Convective core region – Cunha and Brandão, 2011

Base of convective envelope Christensen-Dalsgaard, Monteiro et al., 2011

Asteroseismology:

Glitches: characterizing regions of rapid structural variation

$$v_{nl} = v_{nl}^{s} + \delta v_{nl}^{env} + \delta v_{nl}^{c}$$

$$\delta v_{nl}^{env} \sim A \cos \left[2 \left(2 \pi v_{nl} \tau_d + \varphi \right) \right]$$

$$\tau_d = \tau(r_d) = \int_{r_d}^{R} \frac{dr}{c}$$

Asteroseismology: Glitches: characterizing regions of rapid structural variation

Other topics of research Examples

 \diamond Estimation of global stellar parameters [Teff; log g; metallicity] based on the analysis of stellar spectra.

 \diamond Coupling between magnetic fields pulsations.

 \diamond MCMC parameter space exploitation.

 \diamond Stellar activity and its relation with stellar ages.

 \diamond Jets / winds in young stars.

 \diamond Star-disk interaction and trace the YSO evolution

