Site Map
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE

L. Wisotzki, R. Bacon, J. Blaizot, J. Brinchmann, E. C. Herenz, J. Schaye, N. Bouché, S. Cantalupo, T. Contini, C. M. Carollo, J. Caruana, J.-B. Courbot, E. Emsellem, S. Kamann, J. Kerutt, F. Leclercq, S. Lilly, V. Patrício, C. Sandin, M. Steinmetz, L. A. Straka, T. Urrutia, A. Verhamme, P. Weilbacher, M. Wendt

We report the detection of extended Lyα emission around individual star-forming galaxies at redshifts z = 3−6 in an ultradeep exposure of the Hubble Deep Field South obtained with MUSE on the ESO-VLT. The data reach a limiting surface brightness (1σ) of ~1 × 10-19 erg s-1 cm-2 arcsec-2 in azimuthally averaged radial profiles, an order of magnitude improvement over previous narrowband imaging. Our sample consists of 26 spectroscopically confirmed Lyα-emitting, but mostly continuum-faint (mAB ≳ 27) galaxies. In most objects the Lyα emission is considerably more extended than the UV continuum light. While five of the faintest galaxies in the sample show no significantly detected Lyα haloes, the derived upper limits suggest that this is due to insufficient S/N. Lyα haloes therefore appear to be ubiquitous even for low-mass (~ 108−109 M) star-forming galaxies at z > 3. We decompose the Lyα emission of each object into a compact component tracing the UV continuum and an extended halo component, and infer sizes and luminosities of the haloes. The extended Lyα emission approximately follows an exponential surface brightness distribution with a scale length of a few kpc. While these haloes are thus quite modest in terms of their absolute sizes, they are larger by a factor of 515 than the corresponding rest-frame UV continuum sources as seen by HST. They are also much more extended, by a factor ~5, than Lyα haloes around low-redshift star-forming galaxies. Between ~40% and 90% of the observed Lyα flux comes from the extended halo component, with no obvious correlation of this fraction with either the absolute or the relative size of the Lyα halo. Our observations provide direct insights into the spatial distribution of at least partly neutral gas residing in the circumgalactic medium of low to intermediate mass galaxies at z > 3.

galaxies: high-redshift – galaxies: evolution – galaxies: formation – cosmology: observations – intergalactic medium

Astronomy and Astrophysics
Volume 587, Page A98
March 2016

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website