Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Arp 65 interaction debris: massive H I displacement and star formation

C. Sengupta, T. C. Scott, S. Paudel, D. J. Saikia, K. S. Dwarakanath, B. W. Sohn

Abstract

Context. Pre–merger tidal interactions between pairs of galaxies are known to induce significant changes in the morphologies and kinematics of the stellar and interstellar medium components. Large amounts of gas and stars are often found to be disturbed or displaced as tidal debris. This debris then evolves, sometimes forming stars and occasionally forming tidal dwarf galaxies. Here we present results from our H i study of Arp 65, an interacting pair hosting extended H i tidal debris.
Aims. In an effort to understand the evolution of tidal debris produced by interacting pairs of galaxies, including in situ star and tidal dwarf galaxy formation, we are mapping H i in a sample of interacting galaxy pairs. The Arp 65 pair is the latest member of this sample to be mapped.
Methods. Our resolved H i 21 cm line survey is being carried out using the Giant Metrewave Radio Telescope. We used our H i survey data as well as available SDSS optical, Spitzer infra-red and GALEX UV data to study the evolution of the tidal debris and the correlation of H i with the star-forming regions within it.
Results. In Arp 65 we see a high impact pre–merger tidal interaction involving a pair of massive galaxies (NGC 90 and NGC 93) that have a stellar mass ratio of ~1:3. The interaction, which probably occurred ~1.0–2.5 × 108 yr ago, appears to have displaced a large fraction of the H i in NGC 90 (including the highest column density H i) beyond its optical disk. We also find extended on-going star formation in the outer disk of NGC 90. In the major star-forming regions, we find the H i column densities to be ~4.7 × 1020 cm-2 or lower. But no signature of star formation was found in the highest column density H i debris SE of NGC 90. This indicates conditions within the highest density H i debris remain hostile to star formation and it reaffirms that high H i column densities may be a necessary but not sufficient criterion for star formation.

Keywords
galaxies: individual: Arp 65 – galaxies: interactions – radio lines: ISM – galaxies: star formation – galaxies: ISM – galaxies: groups: general

Astronomy and Astrophysics
Volume 584, Page A114
December 2015

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website