Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

An extreme planetary system around HD 219828. One long-period super Jupiter to a hot-Neptune host star

N. C. Santos, A. Santerne, J. P. S. Faria, J. Rey, A. C. M. Correia, J. Laskar, S. Udry, V. Zh. Adibekyan, F. Bouchy, E. Delgado Mena, C. Melo, X. Dumusque, G. Hébrard, C. Lovis, M. Mayor, M. Montalto, A. Mortier, F. Pepe, P. Figueira, J. Sahlmann, D. Ségransan, S. G. Sousa

Abstract
Context. With about 2000 extrasolar planets confirmed, the results show that planetary systems have a whole range of unexpected properties. This wide diversity provides fundamental clues to the processes of planet formation and evolution.
Aims: We present a full investigation of the HD 219828 system, a bright metal-rich star for which a hot Neptune has previously been detected.
Methods: We used a set of HARPS, SOPHIE, and ELODIE radial velocities to search for the existence of orbiting companions to HD 219828. The spectra were used to characterise the star and its chemical abundances, as well as to check for spurious, activity induced signals. A dynamical analysis is also performed to study the stability of the system and to constrain the orbital parameters and planet masses.
Results: We announce the discovery of a long period (P = 13.1 yr) massive (m sini = 15.1 MJup) companion (HD 219828 c) in a very eccentric orbit (e = 0.81). The same data confirms the existence of a hot Neptune, HD 219828 b, with a minimum mass of 21 M and a period of 3.83 days. The dynamical analysis shows that the system is stable, and that the equilibrium eccentricity of planet b is close to zero.
Conclusions: The HD 219828 system is extreme and unique in several aspects. First, ammong all known exoplanet systems it presents an unusually high mass ratio. We also show that systems like HD 219828, with a hot Neptune and a long-period massive companion are more frequent than similar systems with a hot Jupiter instead. This suggests that the formation of hot Neptunes follows a different path than the formation of their hot jovian counterparts. The high mass, long period, and eccentricity of HD 219828 c also make it a good target for Gaia astrometry as well as a potential target for atmospheric characterisation, using direct imaging or high-resolution spectroscopy. Astrometric observations will allow us to derive its real mass and orbital configuration. If a transit of HD 219828 b is detected, we will be able to fully characterise the system, including the relative orbital inclinations. With a clearly known mass, HD 219828 c may become a benchmark object for the range in between giant planets and brown dwarfs.

Based on observations collected with the HARPS spectrograph at the 3.6-m ESO telescope (La Silla-Paranal Observatory, Chile), runs ID 072.C-0488, 075.C-0332, 075.C-0332, 076.C-0155, 077.C-0101, 183.C-0972, 091.C-0936, and 192.C-0852, as well as with the ELODIE and SOPHIE spectrographs, at the OHP Observatory, France.Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A13

Keywords
planetary systems, techniques: spectroscopic, techniques: radial velocities, stars: individual: HD 219828

Astronomy and Astrophysics
Volume 592
July 2016

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website