Site Map
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Disentangling planetary and stellar activity features in the CoRoT-2 light curve

G. Bruno, M. Deleuil, J.-M. Almenara, S. C. C. Barros, A. F. Lanza, M. Montalto, I. Boisse, A. Santerne, A.-M. Lagrange, N. Meunier

Aims: Stellar activity is an important source of systematic errors and uncertainties in the characterization of exoplanets. Most of the techniques used to correct for this activity focus on an ad hoc data reduction.
Methods: We have developed a software for the combined fit of transits and stellar activity features in high-precision long-duration photometry. Our aim is to take advantage of the modelling to derive correct stellar and planetary parameters, even in the case of strong stellar activity.
Results: We use an analytic approach to model the light curve. The code KSint, modified by adding the evolution of active regions, is implemented into our Bayesian modelling package PASTIS. The code is then applied to the light curve of CoRoT-2. The light curve is divided in segments to reduce the number of free parameters needed by the fit. We perform a Markov chain Monte Carlo analysis in two ways. In the first, we perform a global and independent modelling of each segment of the light curve, transits are not normalized and are fitted together with the activity features, and occulted features are taken into account during the transit fit. In the second, we normalize the transits with a model of the non-occulted activity features, and then we apply a standard transit fit, which does not take the occulted features into account.
Conclusions: Our model recovers the activity features coverage of the stellar surface and different rotation periods for different features. We find variations in the transit parameters of different segments and show that they are likely due to the division applied to the light curve. Neglecting stellar activity or even only bright spots while normalizing the transits yields a 1.2σ larger and 2.3σ smaller transit depth, respectively. The stellar density also presents up to 2.5σ differences depending on the normalization technique. Our analysis confirms the inflated radius of the planet (1.475 ± 0.031RJ) found by other authors. We show that bright spots should be taken into account when fitting the transits. If a dominance of dark spots over bright ones is assumed, and a fit on a lower envelope of the deepest transits is carried out, overestimating the planet-to-star radius ratio of CoRoT-2 b by almost 3% is likely.

planetary systems, starspots, stars: individual: CoRoT-2, techniques: photometric, methods: statistical

Astronomy and Astrophysics
Volume 595
November 2016

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website