Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Helioseismic estimation of convective overshoot in the Sun

J. Christensen-Dalsgaard, M. J. P. F. G. Monteiro, M. J. Thompson

Abstract

By using the periodic signal present in the frequencies of oscillation due to the base of the solar convection zone, Monteiro, Christensen-Dalsgaard & Thompson gave an upper limit to the extent of a layer of convective overshooting in the Sun. Alternative studies have suggested that it may not be possible to do so since the amplitude of the signal does not vary monotonically with the extent of the layer.

In this work a new more complete set of models is used to compare the values of the amplitude obtained from the fitting of the signal with the expected amplitudes. These are determined using the assumption that the rapid variation occurring at the base of the convection zone and creating the periodic signal can be described as discontinuities of the sound-speed derivatives. The amplitude of the signal due to the discontinuity of the third derivative of the sound speed is then proportional to the derivative of the radiative gradient, while the amplitude resulting from the discontinuity of the second derivative is proportional to the difference between radiative and adiabatic gradients at the position where the transition occurs. The latter is non-zero only if overshoot is present.

Asymptotic predictions of the amplitudes of the signal in the p-mode frequencies are in good agreement with the values found from fitting models with substantial overshoot regions; as was also found by Monteiro et al., the observed solar frequencies place severe limits on the extent of overshoot of this nature. 

Monthly Notices of the Royal Astronomical Society
Volume 276, Page 283
September 1995

>> PDF>> ADS

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website