Site Map
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Radius Determination of Solar-Type Stars Using Asteroseismology: What to expect from the KEPLER Mission

D. Stello, W. J. Chaplin, H. Bruntt, O. L. Creevey, A. García Hernández, M. J. P. F. G. Monteiro, A. Moya Bedón, P.-O. Quirion, S. G. Sousa, J.-C. Suárez, T. Appourchaux, T. Arentoft, J. Ballot, T. R. Bedding, J. Christensen-Dalsgaard, Y. Elsworth, S. T. Fletcher, R. A. García, G. Houdek, S. J. Jimenez-Reyes, H. Kjeldsen, R. New, C. Regulo, D. Salabert, T. Toutain

For distant stars, as observed by the NASA Kepler satellite, parallax information is currently of fairly low quality and is not complete. This limits the precision with which the absolute sizes of the stars and their potential transiting planets can be determined by traditional methods. Asteroseismology will be used to aid the radius determination of stars observed during NASA’s Kepler mission. We report on the recent asteroFLAG hare-and-hounds Exercise#2, where a group of ‘hares’ simulated data of F-K main-sequence stars that a group of ‘hounds’ sought to analyze, aimed at determining the stellar radii. We investigated stars in the range 9 < V < 15, both with and without parallaxes. We further test different uncertainties in Teff, and compare results with and without using asteroseismic constraints. Based on the asteroseismic large frequency spacing, obtained from simulations of 4-year time series data from the Kepler mission, we demonstrate that the stellar radii can be correctly and precisely determined, when combined with traditional stellar parameters from the Kepler Input Catalogue. The radii found by the various methods used by each independent hound generally agree with the true values of the artificial stars to within 3%, when the large frequency spacing is used. This is 5–10 times better than the results where seismology is not applied. These results give strong confidence that radius estimation can be performed to better than 3% for solar-like stars using automatic pipeline reduction. Even when the stellar distance and luminosity are unknown we can obtain the same level of agreement. Given the uncertainties used for this exercise we find that the input log g and parallax do not help to constrain the radius, and that Teff and metallicity are the only parameters we need in addition to the large frequency spacing. It is the uncertainty in the metallicity that dominates the uncertainty in the radius.

The Astrophysical Journal
Volume 700, Page 1589
August 2009

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website