Site Map
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Beryllium abundances in stars with planets:
Extending the sample

M. C. Gálvez-Ortiz, E. Delgado Mena, J. I. González Hernández, G. Israelian, N. C. Santos, R. Rebolo López, A. Ecuvillon

Context. Chemical abundances of light elements as beryllium in planet-host stars allow us to study the planet formation scenarios and/or investigate possible surface pollution processes.
Aims. We present here an extension of previous beryllium abundance studies. The complete sample consists of 70 stars hosting planets and 30 stars without known planetary companions. The aim of this paper is to further assess the trends found in previous studies with less number of objects. This will provide more information on the processes of depletion and mixing of light elements in the interior of late type stars, and will provide possible explanations for the abundance differences between stars that host planets and “single” stars.
Methods. Using high resolution UVES spectra, we measure beryllium abundances of 26 stars that host planets and 1 “single” star mainly using the λ 3131.065 Å Be II line, by fitting synthetic spectra to the observational data. We also compile beryllium abundance measurements of 44 stars hosting planets and 29 “single” stars from the literature, resulting in a final sample of 100 objects.
Results. We confirm that the beryllium content is roughly the same in stars hosting planets and in “single” stars at temperatures Teff ≳ 5700 K. The sample is still small for Teff ≲ 5500 K, but it seems that the scatter in Be abundances of dwarf stars is slightly higher at these cooler temperatures.
Conclusions. We search for distinctive characteristics of planet hosts through correlations of Be abundance versus Li abundance, age, metallicity and oxygen abundance. These could provide some insight in the formation and evolution of planetary systems, but we did not find any clear correlation.

stars: abundances - stars: fundamental parameters - planetary systems - planetary systems: formation - stars: atmospheres

Based on observations obtained with UVES at VLT Kueyen 8.2 m telescope in programme 074.C-0134(A)

Astronomy and Astrophysics
Volume 530, Page A66_1
June 2011

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website