Measuring the Redshift Dependence of the Cosmic Microwave Background Monopole Temperature with Planck Data

I. de Martino, F. Atrio-Barandela, A. C. da Silva, H. Ebeling, A. Kashlinsky, D. D. Kocesvski, C. J. A. P. Martins

Abstract
We study the capability of Planck data to constrain deviations of the cosmic microwave background (CMB) blackbody temperature from adiabatic evolution using the thermal Sunyaev–Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets depending on how the cosmological signal is removed: using a CMB template or using the 217 GHz map. We apply two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. The ratio method is biased if CMB residuals with amplitude ~1µK or larger are present in the data, while residuals are not so critical for the fit method. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray-selected clusters with measured redshifts, electron densities, and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter a in the redshift scaling T(z) = T0(1 + z)1-α, with an accuracy of σα = 0.011 in the most optimal case and with σα = 0.018 for a less optimal case. These results represent a factor of 2–3 improvement over similar measurements carried out using quasar spectral lines and a factor 6–20 with respect to earlier results using smaller cluster samples.

Keywords
cosmic background radiation – cosmology: observations – cosmology: theory

The Astrophysical Journal
Volume 757, Page 144_1
October 2012

DOI: 10.1088/0004-637X/757/2/144
ADS Bibliographic code: 2012ApJ...757..144D