Mapa do Site
Contactos
Siga-nos no Facebook Siga-nos no Twitter Canal YouTube
Centro de Astrofísica da Universidade do Porto

Constraining the Redshift Evolution of the Cosmic Microwave Background Blackbody Temperature with PLANCK Data

I. de Martino, R. T. Génova-Santos, F. Atrio-Barandela, H. Ebeling, A. Kashlinsky, D. D. Kocesvski, C. J. A. P. Martins

Resumo
We constrain the deviation of adiabatic evolution of the universe using the data on the cosmic microwave background (CMB) temperature anisotropies measured by the Planck satellite and a sample of 481 X-ray selected clusters with spectroscopically measured redshifts. To avoid antenna beam effects, we bring all of the maps to the same resolution. We use a CMB template to subtract the cosmological signal while preserving the Thermal Sunyaev–Zeldovich (TSZ) anisotropies; next, we remove galactic foreground emissions around each cluster and we mask out all known point sources. If the CMB blackbody temperature scales with redshift as $T{(z)={T}_{0}(1+z)}^{1-alpha }$, we constrain deviations of adiabatic evolution to be α = −0.007 ± 0.013, consistent with the temperature-redshift relation of the standard cosmological model. This result could suffer from a potential bias δα associated with the CMB template. We quantify it to be $| delta alpha | leqslant 0.02$, with the same sign as the measured value of α. Our result is free from those biases associated with using TSZ selected clusters; it represents the best constraint to date of the temperature-redshift relation of the Big Bang model using only CMB data, confirming previous results.

Palavras chave
cosmic background radiation, cosmology: observations, cosmology: theory

The Astrophysical Journal
Volume 808, Página 128
agosto 2015

>> ADS>> DOI