Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

The structural and size evolution of star-forming galaxies over the last 11 Gyr

A. Paulino-Afonso, D. Sobral, F. Buitrago, J. Afonso

Abstract
We present new results on the evolution of rest-frame blue/UV sizes and Sersic indices of Hα-selected star-forming galaxies over the last 11 Gyrs. We investigate how the perceived evolution can be affected by a range of biases and systematics such as cosmological dimming and resolution effects. We use GALFIT and an artificial redshifting technique, which includes the luminosity evolution of Hα-selected galaxies, to quantify the change on the measured structural parameters with redshift. We find typical sizes of 2 to 3 kpc and Sersic indices of n~1.2, close to pure exponential disks all the way from z=2.23 to z=0.4. At z=0 we find typical sizes of 4-5 kpc. Our results show that, when using GALFIT, cosmological dimming has a negligible impact on the derived effective radius for galaxies with 〈10 kpc, but we find a ~20% bias on the estimate of the median Sersic indices, rendering galaxies more disk-like. Star-forming galaxies have grown on average by a factor of 2-3 in the last 11 Gyrs with re(1+z)0.75. By exploring the evolution of the stellar mass-size relation we find evidence for a stronger size evolution of the most massive star-forming galaxies since z~2, as they grow faster towards z~0 when compared to the lower stellar mass counterparts. As we are tracing the rest-frame blue/UV, we are likely witnessing the growth of disks where star formation is ongoing in galaxies while their profiles remain close to exponential disks, n〈1.5, across the same period.

Keywords
galaxies: evolution – galaxies: star formation – galaxies: structure.

Monthly Notices of the Royal Astronomical Society
Volume 465, Page 2717
November 2016

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website