Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Degeneracy in the characterization of non-transiting planets from transit timing variations

G. Boué, M. Oshagh, M. Montalto, N. C. Santos

Abstract
The transit timing variation (TTV) method allows the detection of non-transiting planets through their gravitational perturbations. Since TTVs are strongly enhanced in systems close to mean-motion resonances (MMR), even a low mass planet can produce an observable signal. This technique has thus been proposed to detect terrestrial planets. In this letter, we analyse TTV signals for systems in or close to MMR in order to illustrate the difficulties arising in the determination of planetary parameters. TTVs are computed numerically with an n-body integrator for a variety of systems close to MMR. The main features of these TTVs are also derived analytically. Systems deeply inside MMR do not produce particularly strong TTVs, while those close to MMR generate quasiperiodic TTVs characterised by a dominant long period term and a low amplitude remainder. If the remainder is too weak to be detected, then the signal is strongly degenerate and this prevents the determination of the planetary parameters. Even though an Earth mass planet can be detected by the TTV method if it is close to a MMR, it may not be possible to assert that this planet is actually an Earth mass planet. On the other hand, if the system is right in the center of a MMR, the high amplitude oscillation of the TTV signal vanishes and the detection of the perturber becomes as difficult as it is far from MMR.

Keywords
celestial mechanics – planets and satellites: detection – planetary systems

Monthly Notices of the Royal Astronomical Society
Volume 422, Page L57
May 2012

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website